图正则表示的渐近枚举

IF 1.5 1区 数学 Q1 MATHEMATICS
Binzhou Xia, Shasha Zheng
{"title":"图正则表示的渐近枚举","authors":"Binzhou Xia, Shasha Zheng","doi":"10.1112/plms.12563","DOIUrl":null,"url":null,"abstract":"Abstract We estimate the number of graphical regular representations (GRRs) of a given group with large enough order. As a consequence, we show that almost all finite Cayley graphs have full automorphism groups ‘as small as possible’. This confirms a conjecture of Babai–Godsil–Imrich–Lovász on the proportion of GRRs, as well as a conjecture of Xu on the proportion of normal Cayley graphs, among Cayley graphs of a given finite group.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"6 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic enumeration of graphical regular representations\",\"authors\":\"Binzhou Xia, Shasha Zheng\",\"doi\":\"10.1112/plms.12563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We estimate the number of graphical regular representations (GRRs) of a given group with large enough order. As a consequence, we show that almost all finite Cayley graphs have full automorphism groups ‘as small as possible’. This confirms a conjecture of Babai–Godsil–Imrich–Lovász on the proportion of GRRs, as well as a conjecture of Xu on the proportion of normal Cayley graphs, among Cayley graphs of a given finite group.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12563\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/plms.12563","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们估计了给定组中具有足够大阶数的图形正则表示(grr)的个数。因此,我们证明了几乎所有有限Cayley图都具有“尽可能小”的完全自同构群。这证实了Babai-Godsil-Imrich-Lovász关于grr的比例的一个猜想,以及Xu关于给定有限群的Cayley图中正规Cayley图比例的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic enumeration of graphical regular representations
Abstract We estimate the number of graphical regular representations (GRRs) of a given group with large enough order. As a consequence, we show that almost all finite Cayley graphs have full automorphism groups ‘as small as possible’. This confirms a conjecture of Babai–Godsil–Imrich–Lovász on the proportion of GRRs, as well as a conjecture of Xu on the proportion of normal Cayley graphs, among Cayley graphs of a given finite group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信