Konrad A. Goc, Parviz Moin, Sanjeeb T. Bose, Adam M. Clark
{"title":"风洞和栅格分辨率在大涡模拟中对高扬程通用模型的影响研究","authors":"Konrad A. Goc, Parviz Moin, Sanjeeb T. Bose, Adam M. Clark","doi":"10.2514/1.c037238","DOIUrl":null,"url":null,"abstract":"This paper describes the application of a compressible large-eddy simulation (LES) solver to the flow over the High-Lift Common Research Model (CRM-HL) in landing configuration, a complex external aerodynamic flow configuration with deployed slats, flaps, a flow-through nacelle, and the associated brackets/fairings on the high-lift devices. The bulk Mach number is (0.2) and the mean-aerodynamic-chord-based Reynolds number is typical of a wind tunnel experiment ([Formula: see text]). A key development in these simulations relative to previous work is that this work serves to establish robustness of LES methods to Reynolds number and aircraft configuration. Previous studies focused on the Japan Aerospace Exploration Agency Standard Model, which featured a nearly [Formula: see text] lower Reynolds number than the present CRM-HL investigation and less aggressive wing/slat leading-edge curvature than the CRM-HL geometry, which led to lower leading-edge pressure suction peak magnitudes, both of which led to less stringent grid resolution requirements. In these LES simulations, an algebraic equilibrium wall modeling approach is employed along with a dynamic implementation of the Smagorinsky subgrid-scale model. The calculations are carried out in both a free air setting and one that includes the wind tunnel facility at seven angles of attack at five grid resolution levels, ranging from [Formula: see text] million control volumes. In free air, the solutions show decreasing sensitivity to the grid with each successive refinement level and systematically approach the experimental lift coefficient data as the grid is refined, with the 1.5 billion control volume case showing excellent agreement with the corrected experimental data. The simulations in both free air and in the wind tunnel predict a stall mechanism featuring a large inboard juncture stall and a nose-down break in the pitching moment curve, both of which agree with the experimental observations. The accuracy of the simulations is assessed via comparisons of integrated forces/moments, surface pressures, and surface skin friction visualizations. Graphics processing unit (GPU) acceleration of the charLES solver results in tractable turnaround times that make LES a useful tool in the aerospace industry design cycle. Recent GPU acceleration of the flow solver has made LES solutions that are highly accurate in lift/drag/moment for relevant high-lift aircraft flows achievable within about 5 h of wall time on 600 GPU cores.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"43 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind Tunnel and Grid Resolution Effects in Large-Eddy Simulation of the High-Lift Common Research Model\",\"authors\":\"Konrad A. Goc, Parviz Moin, Sanjeeb T. Bose, Adam M. Clark\",\"doi\":\"10.2514/1.c037238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the application of a compressible large-eddy simulation (LES) solver to the flow over the High-Lift Common Research Model (CRM-HL) in landing configuration, a complex external aerodynamic flow configuration with deployed slats, flaps, a flow-through nacelle, and the associated brackets/fairings on the high-lift devices. The bulk Mach number is (0.2) and the mean-aerodynamic-chord-based Reynolds number is typical of a wind tunnel experiment ([Formula: see text]). A key development in these simulations relative to previous work is that this work serves to establish robustness of LES methods to Reynolds number and aircraft configuration. Previous studies focused on the Japan Aerospace Exploration Agency Standard Model, which featured a nearly [Formula: see text] lower Reynolds number than the present CRM-HL investigation and less aggressive wing/slat leading-edge curvature than the CRM-HL geometry, which led to lower leading-edge pressure suction peak magnitudes, both of which led to less stringent grid resolution requirements. In these LES simulations, an algebraic equilibrium wall modeling approach is employed along with a dynamic implementation of the Smagorinsky subgrid-scale model. The calculations are carried out in both a free air setting and one that includes the wind tunnel facility at seven angles of attack at five grid resolution levels, ranging from [Formula: see text] million control volumes. In free air, the solutions show decreasing sensitivity to the grid with each successive refinement level and systematically approach the experimental lift coefficient data as the grid is refined, with the 1.5 billion control volume case showing excellent agreement with the corrected experimental data. The simulations in both free air and in the wind tunnel predict a stall mechanism featuring a large inboard juncture stall and a nose-down break in the pitching moment curve, both of which agree with the experimental observations. The accuracy of the simulations is assessed via comparisons of integrated forces/moments, surface pressures, and surface skin friction visualizations. Graphics processing unit (GPU) acceleration of the charLES solver results in tractable turnaround times that make LES a useful tool in the aerospace industry design cycle. Recent GPU acceleration of the flow solver has made LES solutions that are highly accurate in lift/drag/moment for relevant high-lift aircraft flows achievable within about 5 h of wall time on 600 GPU cores.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c037238\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.c037238","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Wind Tunnel and Grid Resolution Effects in Large-Eddy Simulation of the High-Lift Common Research Model
This paper describes the application of a compressible large-eddy simulation (LES) solver to the flow over the High-Lift Common Research Model (CRM-HL) in landing configuration, a complex external aerodynamic flow configuration with deployed slats, flaps, a flow-through nacelle, and the associated brackets/fairings on the high-lift devices. The bulk Mach number is (0.2) and the mean-aerodynamic-chord-based Reynolds number is typical of a wind tunnel experiment ([Formula: see text]). A key development in these simulations relative to previous work is that this work serves to establish robustness of LES methods to Reynolds number and aircraft configuration. Previous studies focused on the Japan Aerospace Exploration Agency Standard Model, which featured a nearly [Formula: see text] lower Reynolds number than the present CRM-HL investigation and less aggressive wing/slat leading-edge curvature than the CRM-HL geometry, which led to lower leading-edge pressure suction peak magnitudes, both of which led to less stringent grid resolution requirements. In these LES simulations, an algebraic equilibrium wall modeling approach is employed along with a dynamic implementation of the Smagorinsky subgrid-scale model. The calculations are carried out in both a free air setting and one that includes the wind tunnel facility at seven angles of attack at five grid resolution levels, ranging from [Formula: see text] million control volumes. In free air, the solutions show decreasing sensitivity to the grid with each successive refinement level and systematically approach the experimental lift coefficient data as the grid is refined, with the 1.5 billion control volume case showing excellent agreement with the corrected experimental data. The simulations in both free air and in the wind tunnel predict a stall mechanism featuring a large inboard juncture stall and a nose-down break in the pitching moment curve, both of which agree with the experimental observations. The accuracy of the simulations is assessed via comparisons of integrated forces/moments, surface pressures, and surface skin friction visualizations. Graphics processing unit (GPU) acceleration of the charLES solver results in tractable turnaround times that make LES a useful tool in the aerospace industry design cycle. Recent GPU acceleration of the flow solver has made LES solutions that are highly accurate in lift/drag/moment for relevant high-lift aircraft flows achievable within about 5 h of wall time on 600 GPU cores.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.