Carlos A. Peñuelas, José J. Campos-Gaxiola, Rody Soto-Rojo, Adriana Cruz-Enríquez, Edgar A. Reynoso-Soto, Valentín Miranda-Soto, Juventino J. García, Marcos Flores-Álamo, Jesús Baldenebro-López, Daniel Glossman-Mitnik
{"title":"含三嗪配体和二苯基膦甲烷的新型双核Cu(I)配合物的合成:x射线结构、光学性质、DFT计算及其在DSSCs中的应用","authors":"Carlos A. Peñuelas, José J. Campos-Gaxiola, Rody Soto-Rojo, Adriana Cruz-Enríquez, Edgar A. Reynoso-Soto, Valentín Miranda-Soto, Juventino J. García, Marcos Flores-Álamo, Jesús Baldenebro-López, Daniel Glossman-Mitnik","doi":"10.3390/inorganics11100379","DOIUrl":null,"url":null,"abstract":"A new copper(I) complex, [Cu2(L)2dppm](PF6)2 (1) [L = 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine and dppm: Bis(diphenylphosphino)methane], was prepared and characterized by IR, 1H-NMR, 31P-NMR spectroscopy, elemental and thermogravimetric analysis, and a single-crystal X-ray diffraction technique. Complex 1 is a dinuclear compound, showing that L and dppm act as tridentate and bidentate chelating ligands, respectively. The two Cu(I) atoms exhibit a distorted tetrahedral coordination sphere embedded in N3P environments. The supramolecular interactions in the solid-state structure are characterized by C−H···N, C−H···F, C-H···π and π···π intermolecular interactions, which we studied using Hirshfeld surface and fingerprint tools. Additionally, the complex was studied experimentally using UV–Vis spectroscopy and cyclic voltammetry, and theoretical studies with time-dependent density functional theory (TD-DFT) were performed. Moreover, the optical and electrochemical properties were studied, focusing on the band gap. Compound 1 was used as a co-sensitizer in a dye-sensitized solar cell, showing a good photovoltaic performance of 2.03% (Jsc = 5.095 mAcm−2, Voc = 757 mV, and FF = 52.7%) under 100 mW cm−2 (AM 1.5G) solar irradiation, which is similar to that of DSSC, which was only sensitized by N719 (2.2%) under the same condition.","PeriodicalId":13580,"journal":{"name":"Inorganics (Basel)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of a New Dinuclear Cu(I) Complex with a Triazine Ligand and Diphenylphosphine Methane: X-ray Structure, Optical Properties, DFT Calculations, and Application in DSSCs\",\"authors\":\"Carlos A. Peñuelas, José J. Campos-Gaxiola, Rody Soto-Rojo, Adriana Cruz-Enríquez, Edgar A. Reynoso-Soto, Valentín Miranda-Soto, Juventino J. García, Marcos Flores-Álamo, Jesús Baldenebro-López, Daniel Glossman-Mitnik\",\"doi\":\"10.3390/inorganics11100379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new copper(I) complex, [Cu2(L)2dppm](PF6)2 (1) [L = 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine and dppm: Bis(diphenylphosphino)methane], was prepared and characterized by IR, 1H-NMR, 31P-NMR spectroscopy, elemental and thermogravimetric analysis, and a single-crystal X-ray diffraction technique. Complex 1 is a dinuclear compound, showing that L and dppm act as tridentate and bidentate chelating ligands, respectively. The two Cu(I) atoms exhibit a distorted tetrahedral coordination sphere embedded in N3P environments. The supramolecular interactions in the solid-state structure are characterized by C−H···N, C−H···F, C-H···π and π···π intermolecular interactions, which we studied using Hirshfeld surface and fingerprint tools. Additionally, the complex was studied experimentally using UV–Vis spectroscopy and cyclic voltammetry, and theoretical studies with time-dependent density functional theory (TD-DFT) were performed. Moreover, the optical and electrochemical properties were studied, focusing on the band gap. Compound 1 was used as a co-sensitizer in a dye-sensitized solar cell, showing a good photovoltaic performance of 2.03% (Jsc = 5.095 mAcm−2, Voc = 757 mV, and FF = 52.7%) under 100 mW cm−2 (AM 1.5G) solar irradiation, which is similar to that of DSSC, which was only sensitized by N719 (2.2%) under the same condition.\",\"PeriodicalId\":13580,\"journal\":{\"name\":\"Inorganics (Basel)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics (Basel)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics11100379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inorganics11100379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of a New Dinuclear Cu(I) Complex with a Triazine Ligand and Diphenylphosphine Methane: X-ray Structure, Optical Properties, DFT Calculations, and Application in DSSCs
A new copper(I) complex, [Cu2(L)2dppm](PF6)2 (1) [L = 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine and dppm: Bis(diphenylphosphino)methane], was prepared and characterized by IR, 1H-NMR, 31P-NMR spectroscopy, elemental and thermogravimetric analysis, and a single-crystal X-ray diffraction technique. Complex 1 is a dinuclear compound, showing that L and dppm act as tridentate and bidentate chelating ligands, respectively. The two Cu(I) atoms exhibit a distorted tetrahedral coordination sphere embedded in N3P environments. The supramolecular interactions in the solid-state structure are characterized by C−H···N, C−H···F, C-H···π and π···π intermolecular interactions, which we studied using Hirshfeld surface and fingerprint tools. Additionally, the complex was studied experimentally using UV–Vis spectroscopy and cyclic voltammetry, and theoretical studies with time-dependent density functional theory (TD-DFT) were performed. Moreover, the optical and electrochemical properties were studied, focusing on the band gap. Compound 1 was used as a co-sensitizer in a dye-sensitized solar cell, showing a good photovoltaic performance of 2.03% (Jsc = 5.095 mAcm−2, Voc = 757 mV, and FF = 52.7%) under 100 mW cm−2 (AM 1.5G) solar irradiation, which is similar to that of DSSC, which was only sensitized by N719 (2.2%) under the same condition.