{"title":"电解诱发硬度变化定量评价循环水结垢倾向","authors":"Guopeng Zheng, Lida Wang, Wen Sun, Zhengqing Yang, Xuewei Bao, Anfeng Hao, Haitao Deng, Hejin Li, Guichang Liu","doi":"10.2166/ws.2023.243","DOIUrl":null,"url":null,"abstract":"Abstract The scaling problem exists universally in circulating water systems. Efficient and accurate assessment of scaling tendency is a prerequisite for solving the problem. In this work, it proposes electrolysis to induce hardness variation, which connects with the water stability evaluation index for quantitatively assessing the scaling tendency of water. The quantitative assessment is further realized on the basis of qualitative assessment. Then, the dynamic simulation experiments of circulating water are carried out to provide support for the electrolysis-induced hardness variation which clarifies the criteria that can meet the actual water requirements. This work can achieve an efficient and accurate quantitative assessment of the scaling tendency, which is of great significance for solving the scaling problem of circulating water systems.","PeriodicalId":23573,"journal":{"name":"Water Science & Technology: Water Supply","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolysis-induced hardness variation for quantitatively assessing the scaling tendency of circulating water\",\"authors\":\"Guopeng Zheng, Lida Wang, Wen Sun, Zhengqing Yang, Xuewei Bao, Anfeng Hao, Haitao Deng, Hejin Li, Guichang Liu\",\"doi\":\"10.2166/ws.2023.243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The scaling problem exists universally in circulating water systems. Efficient and accurate assessment of scaling tendency is a prerequisite for solving the problem. In this work, it proposes electrolysis to induce hardness variation, which connects with the water stability evaluation index for quantitatively assessing the scaling tendency of water. The quantitative assessment is further realized on the basis of qualitative assessment. Then, the dynamic simulation experiments of circulating water are carried out to provide support for the electrolysis-induced hardness variation which clarifies the criteria that can meet the actual water requirements. This work can achieve an efficient and accurate quantitative assessment of the scaling tendency, which is of great significance for solving the scaling problem of circulating water systems.\",\"PeriodicalId\":23573,\"journal\":{\"name\":\"Water Science & Technology: Water Supply\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology: Water Supply\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology: Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrolysis-induced hardness variation for quantitatively assessing the scaling tendency of circulating water
Abstract The scaling problem exists universally in circulating water systems. Efficient and accurate assessment of scaling tendency is a prerequisite for solving the problem. In this work, it proposes electrolysis to induce hardness variation, which connects with the water stability evaluation index for quantitatively assessing the scaling tendency of water. The quantitative assessment is further realized on the basis of qualitative assessment. Then, the dynamic simulation experiments of circulating water are carried out to provide support for the electrolysis-induced hardness variation which clarifies the criteria that can meet the actual water requirements. This work can achieve an efficient and accurate quantitative assessment of the scaling tendency, which is of great significance for solving the scaling problem of circulating water systems.