{"title":"混凝土的收缩性能和模型结合碎石石灰石砂与高含量的填充物路面板","authors":"Amal Bousleh, Saloua El Euch Khay","doi":"10.1080/19648189.2023.2276128","DOIUrl":null,"url":null,"abstract":"AbstractBecause of the gradual depletion of gravel and river sand resources and restrictions on quarrying activities to maintain the ecological balance, limestone crushed sand with a high content of limestone fillers is being explored to be used, as an alternative source of supply, in Portland cement concrete (PCC) for rigid pavement. This paper aims to first present mechanical test results carried out on three types of PCC formulated with crushed limestone sand as fine aggregates, devoid of superplasticizers. Since shrinkage cracking is an important problem for rigid pavement, the shrinkage behaviour of these concretes is then experimentally investigated. Furthermore, three existing models (ACI-209, Eurocode2, and triple-sphere models) and a novel-developed model are used to estimate the mixtures’ shrinkage. Results showed that the designed mixtures exhibited normal shrinkage values. The shrinkage modelling revealed that the proposed model well fitted the experimental data. Besides, Eurocode2 and ACI-209 models may be adapted for the case of limestone concretes containing a high content of limestone fillers and then used to accurately estimate their shrinkage strains. However, the triple-sphere model was unsuitable for these concretes and overestimated their ultimate shrinkage since it does not take into account their high filler content. Nevertheless, by adjusting the paste shrinkage expression, the ultimate shrinkage strain values of the tested mixtures were improved.Keywords: Rigid pavementconcretecrushed limestone sandShrinkagemodelling Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are openly available in Mendeley data at http://doi.org/ 10.17632/d828k98rrk.1.","PeriodicalId":11970,"journal":{"name":"European Journal of Environmental and Civil Engineering","volume":"217 ","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shrinkage performance and modelling of concretes incorporating crushed limestone sand with a high content of fillers for pavement slabs\",\"authors\":\"Amal Bousleh, Saloua El Euch Khay\",\"doi\":\"10.1080/19648189.2023.2276128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractBecause of the gradual depletion of gravel and river sand resources and restrictions on quarrying activities to maintain the ecological balance, limestone crushed sand with a high content of limestone fillers is being explored to be used, as an alternative source of supply, in Portland cement concrete (PCC) for rigid pavement. This paper aims to first present mechanical test results carried out on three types of PCC formulated with crushed limestone sand as fine aggregates, devoid of superplasticizers. Since shrinkage cracking is an important problem for rigid pavement, the shrinkage behaviour of these concretes is then experimentally investigated. Furthermore, three existing models (ACI-209, Eurocode2, and triple-sphere models) and a novel-developed model are used to estimate the mixtures’ shrinkage. Results showed that the designed mixtures exhibited normal shrinkage values. The shrinkage modelling revealed that the proposed model well fitted the experimental data. Besides, Eurocode2 and ACI-209 models may be adapted for the case of limestone concretes containing a high content of limestone fillers and then used to accurately estimate their shrinkage strains. However, the triple-sphere model was unsuitable for these concretes and overestimated their ultimate shrinkage since it does not take into account their high filler content. Nevertheless, by adjusting the paste shrinkage expression, the ultimate shrinkage strain values of the tested mixtures were improved.Keywords: Rigid pavementconcretecrushed limestone sandShrinkagemodelling Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are openly available in Mendeley data at http://doi.org/ 10.17632/d828k98rrk.1.\",\"PeriodicalId\":11970,\"journal\":{\"name\":\"European Journal of Environmental and Civil Engineering\",\"volume\":\"217 \",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Environmental and Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19648189.2023.2276128\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Environmental and Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19648189.2023.2276128","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Shrinkage performance and modelling of concretes incorporating crushed limestone sand with a high content of fillers for pavement slabs
AbstractBecause of the gradual depletion of gravel and river sand resources and restrictions on quarrying activities to maintain the ecological balance, limestone crushed sand with a high content of limestone fillers is being explored to be used, as an alternative source of supply, in Portland cement concrete (PCC) for rigid pavement. This paper aims to first present mechanical test results carried out on three types of PCC formulated with crushed limestone sand as fine aggregates, devoid of superplasticizers. Since shrinkage cracking is an important problem for rigid pavement, the shrinkage behaviour of these concretes is then experimentally investigated. Furthermore, three existing models (ACI-209, Eurocode2, and triple-sphere models) and a novel-developed model are used to estimate the mixtures’ shrinkage. Results showed that the designed mixtures exhibited normal shrinkage values. The shrinkage modelling revealed that the proposed model well fitted the experimental data. Besides, Eurocode2 and ACI-209 models may be adapted for the case of limestone concretes containing a high content of limestone fillers and then used to accurately estimate their shrinkage strains. However, the triple-sphere model was unsuitable for these concretes and overestimated their ultimate shrinkage since it does not take into account their high filler content. Nevertheless, by adjusting the paste shrinkage expression, the ultimate shrinkage strain values of the tested mixtures were improved.Keywords: Rigid pavementconcretecrushed limestone sandShrinkagemodelling Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are openly available in Mendeley data at http://doi.org/ 10.17632/d828k98rrk.1.
期刊介绍:
The European Research Area has now become a reality. The prime objective of the EJECE is to fully document advances in International scientific and technical research in the fields of sustainable construction and soil engineering. In particular regard to the latter, the environmental preservation of natural media (soils and rocks) and the mitigation of soil-related risks are now not only major societal challenges, but they are also the source of scientific and technical developments that could be extremely beneficial.