{"title":"Eckhaus-Kundu方程中孤波的轨道稳定性","authors":"Yuli Guo, Weiguo Zhang, Siyu Hong","doi":"10.1007/s44198-023-00148-y","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the orbital stability of solitary wave for Eckhaus–Kundu equation is studied. Since the equation we studied is difficult to be expressed as a standard Hamiltonian system, the Grillakis–Shatah–Strauss theory about the orbital stability of soliton solutions for nonlinear Hamiltonian systems cannot be directly applied. By constructing three new conserved quantities and using special techniques and detailed spectral analysis, the above difficulty is overcome, then we obtain the conclusion that the solitary wave of Eckhaus–Kundu equation is orbitally stable.","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital Stability of Solitary Wave for Eckhaus–Kundu Equation\",\"authors\":\"Yuli Guo, Weiguo Zhang, Siyu Hong\",\"doi\":\"10.1007/s44198-023-00148-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the orbital stability of solitary wave for Eckhaus–Kundu equation is studied. Since the equation we studied is difficult to be expressed as a standard Hamiltonian system, the Grillakis–Shatah–Strauss theory about the orbital stability of soliton solutions for nonlinear Hamiltonian systems cannot be directly applied. By constructing three new conserved quantities and using special techniques and detailed spectral analysis, the above difficulty is overcome, then we obtain the conclusion that the solitary wave of Eckhaus–Kundu equation is orbitally stable.\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-023-00148-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44198-023-00148-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Orbital Stability of Solitary Wave for Eckhaus–Kundu Equation
Abstract In this paper, the orbital stability of solitary wave for Eckhaus–Kundu equation is studied. Since the equation we studied is difficult to be expressed as a standard Hamiltonian system, the Grillakis–Shatah–Strauss theory about the orbital stability of soliton solutions for nonlinear Hamiltonian systems cannot be directly applied. By constructing three new conserved quantities and using special techniques and detailed spectral analysis, the above difficulty is overcome, then we obtain the conclusion that the solitary wave of Eckhaus–Kundu equation is orbitally stable.
期刊介绍:
Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles.
Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics.
The main subjects are:
-Nonlinear Equations of Mathematical Physics-
Quantum Algebras and Integrability-
Discrete Integrable Systems and Discrete Geometry-
Applications of Lie Group Theory and Lie Algebras-
Non-Commutative Geometry-
Super Geometry and Super Integrable System-
Integrability and Nonintegrability, Painleve Analysis-
Inverse Scattering Method-
Geometry of Soliton Equations and Applications of Twistor Theory-
Classical and Quantum Many Body Problems-
Deformation and Geometric Quantization-
Instanton, Monopoles and Gauge Theory-
Differential Geometry and Mathematical Physics