{"title":"基于模函数的空间强收敛性研究","authors":"Mustafa Hatim, Çiğdem Bektaş","doi":"10.7546/crabs.2023.10.01","DOIUrl":null,"url":null,"abstract":"In this article, we study a new generalization of the lacunary strongly convergent sequences and introduce the concept of lacunary strong convergence according to $$g^k$$ for sequences of complex (or real) numbers, where $$g^k=g\\circ g\\circ\\dots\\circ g$$ ($$k$$ times) represents a composite modulus function. After that, we determine the connections of lacunary strong convergence and lacunary statistical convergence to lacunary strong convergence according to $$g^k$$. Furthermore, we investigate several properties of this generalization.","PeriodicalId":50652,"journal":{"name":"Comptes Rendus De L Academie Bulgare Des Sciences","volume":"341 ","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Lacunary Strong Convergence according to Modulus Functions\",\"authors\":\"Mustafa Hatim, Çiğdem Bektaş\",\"doi\":\"10.7546/crabs.2023.10.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study a new generalization of the lacunary strongly convergent sequences and introduce the concept of lacunary strong convergence according to $$g^k$$ for sequences of complex (or real) numbers, where $$g^k=g\\\\circ g\\\\circ\\\\dots\\\\circ g$$ ($$k$$ times) represents a composite modulus function. After that, we determine the connections of lacunary strong convergence and lacunary statistical convergence to lacunary strong convergence according to $$g^k$$. Furthermore, we investigate several properties of this generalization.\",\"PeriodicalId\":50652,\"journal\":{\"name\":\"Comptes Rendus De L Academie Bulgare Des Sciences\",\"volume\":\"341 \",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus De L Academie Bulgare Des Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/crabs.2023.10.01\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus De L Academie Bulgare Des Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/crabs.2023.10.01","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A Study on Lacunary Strong Convergence according to Modulus Functions
In this article, we study a new generalization of the lacunary strongly convergent sequences and introduce the concept of lacunary strong convergence according to $$g^k$$ for sequences of complex (or real) numbers, where $$g^k=g\circ g\circ\dots\circ g$$ ($$k$$ times) represents a composite modulus function. After that, we determine the connections of lacunary strong convergence and lacunary statistical convergence to lacunary strong convergence according to $$g^k$$. Furthermore, we investigate several properties of this generalization.
期刊介绍:
Founded in 1948 by academician Georgy Nadjakov, "Comptes rendus de l’Académie bulgare des Sciences" is also known as "Доклади на БАН","Доклады Болгарской академии наук" and "Proceeding of the Bulgarian Academy of Sciences".
If applicable, the name of the journal should be abbreviated as follows: C. R. Acad. Bulg. Sci. (according to ISO)