{"title":"美国太平洋西北地区9级特大逆冲地震ShakeAlert地震预警系统基于人群的性能评价","authors":"Mika Thompson, J. Renate Hartog, Erin A. Wirth","doi":"10.1785/0120230055","DOIUrl":null,"url":null,"abstract":"ABSTRACT We evaluate the potential performance of the ShakeAlert earthquake early warning system for M 9 megathrust earthquakes in the Pacific Northwest (PNW) using synthetic seismograms from 30 simulated M 9 earthquake scenarios on the Cascadia subduction zone. The timeliness and accuracy of source estimates and effectiveness of ShakeAlert alert contours are evaluated with a station-based alert classification scheme using an alert threshold equal to the target threshold. We develop a population-based alert classification method by aligning a population grid with Voronoi diagrams computed from the station locations for each scenario. Using raster statistics, we estimate the PNW population that would receive timely accurate alerts during an offshore M 9 earthquake. We also examine the range of expected warning times with respect to the spatial distribution of the population. Results show that most of the population in our evaluation region could receive alerts with positive warning times for an alert threshold of modified Mercalli intensity (MMI) III, but that late and missed alerts increase because the alert threshold is increased. An average of just under 60% of the population would be alerted for MMI V prior to the arrival of threshold level shaking. Large regions of late and missed alerts for thresholds MMI IV and V are caused by delays in alert updates, inaccurate FinDer source estimates, and undersized alert contours due to magnitude underestimation. We also investigate an alerting strategy where ShakeAlert sends out an alert to the entire evaluation region when the system detects at least an M 8 earthquake along the coast. Because large magnitude offshore earthquakes are rare in Cascadia, overalerting is most likely to occur from an overestimated M 7+ on the Gorda plate. With appropriate criteria to minimize overalerting, this strategy may eliminate all missed and late alerts except at sites close to the epicenter.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"2016 34","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Population-Based Performance Evaluation of the ShakeAlert Earthquake Early Warning System for <i>M</i> 9 Megathrust Earthquakes in the Pacific Northwest, U.S.A.\",\"authors\":\"Mika Thompson, J. Renate Hartog, Erin A. Wirth\",\"doi\":\"10.1785/0120230055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We evaluate the potential performance of the ShakeAlert earthquake early warning system for M 9 megathrust earthquakes in the Pacific Northwest (PNW) using synthetic seismograms from 30 simulated M 9 earthquake scenarios on the Cascadia subduction zone. The timeliness and accuracy of source estimates and effectiveness of ShakeAlert alert contours are evaluated with a station-based alert classification scheme using an alert threshold equal to the target threshold. We develop a population-based alert classification method by aligning a population grid with Voronoi diagrams computed from the station locations for each scenario. Using raster statistics, we estimate the PNW population that would receive timely accurate alerts during an offshore M 9 earthquake. We also examine the range of expected warning times with respect to the spatial distribution of the population. Results show that most of the population in our evaluation region could receive alerts with positive warning times for an alert threshold of modified Mercalli intensity (MMI) III, but that late and missed alerts increase because the alert threshold is increased. An average of just under 60% of the population would be alerted for MMI V prior to the arrival of threshold level shaking. Large regions of late and missed alerts for thresholds MMI IV and V are caused by delays in alert updates, inaccurate FinDer source estimates, and undersized alert contours due to magnitude underestimation. We also investigate an alerting strategy where ShakeAlert sends out an alert to the entire evaluation region when the system detects at least an M 8 earthquake along the coast. Because large magnitude offshore earthquakes are rare in Cascadia, overalerting is most likely to occur from an overestimated M 7+ on the Gorda plate. With appropriate criteria to minimize overalerting, this strategy may eliminate all missed and late alerts except at sites close to the epicenter.\",\"PeriodicalId\":9444,\"journal\":{\"name\":\"Bulletin of the Seismological Society of America\",\"volume\":\"2016 34\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Seismological Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0120230055\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0120230055","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A Population-Based Performance Evaluation of the ShakeAlert Earthquake Early Warning System for M 9 Megathrust Earthquakes in the Pacific Northwest, U.S.A.
ABSTRACT We evaluate the potential performance of the ShakeAlert earthquake early warning system for M 9 megathrust earthquakes in the Pacific Northwest (PNW) using synthetic seismograms from 30 simulated M 9 earthquake scenarios on the Cascadia subduction zone. The timeliness and accuracy of source estimates and effectiveness of ShakeAlert alert contours are evaluated with a station-based alert classification scheme using an alert threshold equal to the target threshold. We develop a population-based alert classification method by aligning a population grid with Voronoi diagrams computed from the station locations for each scenario. Using raster statistics, we estimate the PNW population that would receive timely accurate alerts during an offshore M 9 earthquake. We also examine the range of expected warning times with respect to the spatial distribution of the population. Results show that most of the population in our evaluation region could receive alerts with positive warning times for an alert threshold of modified Mercalli intensity (MMI) III, but that late and missed alerts increase because the alert threshold is increased. An average of just under 60% of the population would be alerted for MMI V prior to the arrival of threshold level shaking. Large regions of late and missed alerts for thresholds MMI IV and V are caused by delays in alert updates, inaccurate FinDer source estimates, and undersized alert contours due to magnitude underestimation. We also investigate an alerting strategy where ShakeAlert sends out an alert to the entire evaluation region when the system detects at least an M 8 earthquake along the coast. Because large magnitude offshore earthquakes are rare in Cascadia, overalerting is most likely to occur from an overestimated M 7+ on the Gorda plate. With appropriate criteria to minimize overalerting, this strategy may eliminate all missed and late alerts except at sites close to the epicenter.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.