{"title":"复杂环境下收获机器人苹果识别与采摘顺序规划","authors":"Wei Ji, Tong Zhang, Bo Xu, Guozhi He","doi":"10.4081/jae.2023.1549","DOIUrl":null,"url":null,"abstract":"In order to improve the efficiency of robots picking apples in challenging orchard environments, a method for precisely detecting apples and planning the picking sequence is proposed. Firstly, the EfficientFormer network serves as the foundation for YOLOV5, which uses the EF-YOLOV5s network to locate apples in difficult situations. Meanwhile, the Soft Non-Maximum Suppression (NMS) algorithm is adopted to achieve accurate identification of overlapping apples. Secondly, the adjacently identified apples are automatically divided into different picking clusters by the improved density-based spatial clustering of applications with noise (DBSCAN). Finally, the order of apple harvest is determined to guide the robot to complete the rapid picking, according to the weight of the Gauss distance weight combined with the significance level. In the experiment, the average precision of this method is 98.84%, which is 4.3% higher than that of YOLOV5s. Meanwhile, the average picking success rate and picking time are 94.8% and 2.86 seconds, respectively. Compared with sequential and random planning, the picking success rate of the proposed method is increased by 6.8% and 13.1%, respectively. The research proves that this method can accurately detect apples in complex environments and improve picking efficiency, which can provide technical support for harvesting robots.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"56 6","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apple recognition and picking sequence planning for harvesting robot in the complex environment\",\"authors\":\"Wei Ji, Tong Zhang, Bo Xu, Guozhi He\",\"doi\":\"10.4081/jae.2023.1549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the efficiency of robots picking apples in challenging orchard environments, a method for precisely detecting apples and planning the picking sequence is proposed. Firstly, the EfficientFormer network serves as the foundation for YOLOV5, which uses the EF-YOLOV5s network to locate apples in difficult situations. Meanwhile, the Soft Non-Maximum Suppression (NMS) algorithm is adopted to achieve accurate identification of overlapping apples. Secondly, the adjacently identified apples are automatically divided into different picking clusters by the improved density-based spatial clustering of applications with noise (DBSCAN). Finally, the order of apple harvest is determined to guide the robot to complete the rapid picking, according to the weight of the Gauss distance weight combined with the significance level. In the experiment, the average precision of this method is 98.84%, which is 4.3% higher than that of YOLOV5s. Meanwhile, the average picking success rate and picking time are 94.8% and 2.86 seconds, respectively. Compared with sequential and random planning, the picking success rate of the proposed method is increased by 6.8% and 13.1%, respectively. The research proves that this method can accurately detect apples in complex environments and improve picking efficiency, which can provide technical support for harvesting robots.\",\"PeriodicalId\":48507,\"journal\":{\"name\":\"Journal of Agricultural Engineering\",\"volume\":\"56 6\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/jae.2023.1549\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/jae.2023.1549","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Apple recognition and picking sequence planning for harvesting robot in the complex environment
In order to improve the efficiency of robots picking apples in challenging orchard environments, a method for precisely detecting apples and planning the picking sequence is proposed. Firstly, the EfficientFormer network serves as the foundation for YOLOV5, which uses the EF-YOLOV5s network to locate apples in difficult situations. Meanwhile, the Soft Non-Maximum Suppression (NMS) algorithm is adopted to achieve accurate identification of overlapping apples. Secondly, the adjacently identified apples are automatically divided into different picking clusters by the improved density-based spatial clustering of applications with noise (DBSCAN). Finally, the order of apple harvest is determined to guide the robot to complete the rapid picking, according to the weight of the Gauss distance weight combined with the significance level. In the experiment, the average precision of this method is 98.84%, which is 4.3% higher than that of YOLOV5s. Meanwhile, the average picking success rate and picking time are 94.8% and 2.86 seconds, respectively. Compared with sequential and random planning, the picking success rate of the proposed method is increased by 6.8% and 13.1%, respectively. The research proves that this method can accurately detect apples in complex environments and improve picking efficiency, which can provide technical support for harvesting robots.
期刊介绍:
The Journal of Agricultural Engineering (JAE) is the official journal of the Italian Society of Agricultural Engineering supported by University of Bologna, Italy. The subject matter covers a complete and interdisciplinary range of research in engineering for agriculture and biosystems.