{"title":"利用全和紧凑型偏振C波段和l波段合成孔径雷达的融冰季节北极海冰类型可分离性","authors":"Aikaterini Tavri, Randall Scharien, Torsten Geldsetzer","doi":"10.1080/07038992.2023.2271578","DOIUrl":null,"url":null,"abstract":"Sea ice mapping using Synthetic Aperture Radar (SAR) in the melt season poses challenges, due to wet snow and melt ponds complicating sea ice type separability. To address this, we analyzed fully polarimetric (FP) and simulated compact polarimetric (CP) C- (RADARSAT-2) and L- (ALOS-2 PALSAR-2) band SAR, in the 2018 melt season in the Canadian Arctic Archipelago, for stage-wise separation of first year ice (FYI) and multiyear ice (MYI). SAR scenes at both near- (19.1–28.3°) and far- (35.8–42.1°) range incidence angles and coincident high-resolution optical scenes were used to assess the impact of surface melt ponds on separability within a landfast ice zone of diverse ice thickness. C-band provided better separability between FYI and MYI during pond onset, while L-band was superior during pond drainage due to MYI volumetric scattering. CP parameters matched FP performance across the melt season. HH and HV, commonly offered in ScanSAR mode for both frequencies, presented good separability during pond onset and drainage. Using both C-band and L-band SAR along with constraining incidence angle ranges, enhances sea ice type identification and separability. Our results can support ice type classification and seasonal stage detection for climate studies and enhance existing frameworks for ice motion vector retrievals.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melt Season Arctic Sea Ice Type Separability Using Fully and Compact Polarimetric C- and L-Band Synthetic Aperture Radar\",\"authors\":\"Aikaterini Tavri, Randall Scharien, Torsten Geldsetzer\",\"doi\":\"10.1080/07038992.2023.2271578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea ice mapping using Synthetic Aperture Radar (SAR) in the melt season poses challenges, due to wet snow and melt ponds complicating sea ice type separability. To address this, we analyzed fully polarimetric (FP) and simulated compact polarimetric (CP) C- (RADARSAT-2) and L- (ALOS-2 PALSAR-2) band SAR, in the 2018 melt season in the Canadian Arctic Archipelago, for stage-wise separation of first year ice (FYI) and multiyear ice (MYI). SAR scenes at both near- (19.1–28.3°) and far- (35.8–42.1°) range incidence angles and coincident high-resolution optical scenes were used to assess the impact of surface melt ponds on separability within a landfast ice zone of diverse ice thickness. C-band provided better separability between FYI and MYI during pond onset, while L-band was superior during pond drainage due to MYI volumetric scattering. CP parameters matched FP performance across the melt season. HH and HV, commonly offered in ScanSAR mode for both frequencies, presented good separability during pond onset and drainage. Using both C-band and L-band SAR along with constraining incidence angle ranges, enhances sea ice type identification and separability. Our results can support ice type classification and seasonal stage detection for climate studies and enhance existing frameworks for ice motion vector retrievals.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2023.2271578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07038992.2023.2271578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Melt Season Arctic Sea Ice Type Separability Using Fully and Compact Polarimetric C- and L-Band Synthetic Aperture Radar
Sea ice mapping using Synthetic Aperture Radar (SAR) in the melt season poses challenges, due to wet snow and melt ponds complicating sea ice type separability. To address this, we analyzed fully polarimetric (FP) and simulated compact polarimetric (CP) C- (RADARSAT-2) and L- (ALOS-2 PALSAR-2) band SAR, in the 2018 melt season in the Canadian Arctic Archipelago, for stage-wise separation of first year ice (FYI) and multiyear ice (MYI). SAR scenes at both near- (19.1–28.3°) and far- (35.8–42.1°) range incidence angles and coincident high-resolution optical scenes were used to assess the impact of surface melt ponds on separability within a landfast ice zone of diverse ice thickness. C-band provided better separability between FYI and MYI during pond onset, while L-band was superior during pond drainage due to MYI volumetric scattering. CP parameters matched FP performance across the melt season. HH and HV, commonly offered in ScanSAR mode for both frequencies, presented good separability during pond onset and drainage. Using both C-band and L-band SAR along with constraining incidence angle ranges, enhances sea ice type identification and separability. Our results can support ice type classification and seasonal stage detection for climate studies and enhance existing frameworks for ice motion vector retrievals.