{"title":"基于自特征配准的金属密封环成形面三维动态测量振动误差补偿方法","authors":"Hao-Nan Pei, Wen-Jing Zhou, Ming Luo","doi":"10.1177/00202940231203775","DOIUrl":null,"url":null,"abstract":"The formed surface quality of metallic sealing ring of aero-engine affects the aircraft service performance directly. However, existing inspection methods, such as the final destructive inspection and the line laser scanner section profile measurement, only evaluate the formed quality from a 2-D view, that is, single or multiple radial formed section profiles. The lack of geometric information of 3-D surface is not conducive to the comprehensive monitoring of forming quality and process planning. Therefore, based on the line laser scanners, this paper mainly proposes a vibration errors compensation method based on self-feature registration. Aiming at the problem of rigid transformation of the measurement profile caused by random vibration during the rotary motion of metallic sealing ring, the feature of measurement profile in stationary scene (MPSS), that is, the medial axis, is used as the reference for the correct pose of measurement profile. The principle of finding the correct pose of measurement profile in rotary motion scene (MPRMS) is to minimize the distance between the medial axes. Next, based on the rotary motion information of metallic sealing ring and the geometric information of measurement system, a 3-D reconstruction matrix is built, so as to convert each measurement profile to the base coordinate system in turn, and finally a 3-D dynamic measurement method for the metallic sealing ring forming surface is built. The effectiveness of the proposed method is verified through simulation experiment and real measurement.","PeriodicalId":49849,"journal":{"name":"Measurement & Control","volume":"2011 15","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration errors compensation method based on self-feature registration for the 3-D dynamic measurement of metallic sealing ring forming surface\",\"authors\":\"Hao-Nan Pei, Wen-Jing Zhou, Ming Luo\",\"doi\":\"10.1177/00202940231203775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formed surface quality of metallic sealing ring of aero-engine affects the aircraft service performance directly. However, existing inspection methods, such as the final destructive inspection and the line laser scanner section profile measurement, only evaluate the formed quality from a 2-D view, that is, single or multiple radial formed section profiles. The lack of geometric information of 3-D surface is not conducive to the comprehensive monitoring of forming quality and process planning. Therefore, based on the line laser scanners, this paper mainly proposes a vibration errors compensation method based on self-feature registration. Aiming at the problem of rigid transformation of the measurement profile caused by random vibration during the rotary motion of metallic sealing ring, the feature of measurement profile in stationary scene (MPSS), that is, the medial axis, is used as the reference for the correct pose of measurement profile. The principle of finding the correct pose of measurement profile in rotary motion scene (MPRMS) is to minimize the distance between the medial axes. Next, based on the rotary motion information of metallic sealing ring and the geometric information of measurement system, a 3-D reconstruction matrix is built, so as to convert each measurement profile to the base coordinate system in turn, and finally a 3-D dynamic measurement method for the metallic sealing ring forming surface is built. The effectiveness of the proposed method is verified through simulation experiment and real measurement.\",\"PeriodicalId\":49849,\"journal\":{\"name\":\"Measurement & Control\",\"volume\":\"2011 15\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231203775\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231203775","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Vibration errors compensation method based on self-feature registration for the 3-D dynamic measurement of metallic sealing ring forming surface
The formed surface quality of metallic sealing ring of aero-engine affects the aircraft service performance directly. However, existing inspection methods, such as the final destructive inspection and the line laser scanner section profile measurement, only evaluate the formed quality from a 2-D view, that is, single or multiple radial formed section profiles. The lack of geometric information of 3-D surface is not conducive to the comprehensive monitoring of forming quality and process planning. Therefore, based on the line laser scanners, this paper mainly proposes a vibration errors compensation method based on self-feature registration. Aiming at the problem of rigid transformation of the measurement profile caused by random vibration during the rotary motion of metallic sealing ring, the feature of measurement profile in stationary scene (MPSS), that is, the medial axis, is used as the reference for the correct pose of measurement profile. The principle of finding the correct pose of measurement profile in rotary motion scene (MPRMS) is to minimize the distance between the medial axes. Next, based on the rotary motion information of metallic sealing ring and the geometric information of measurement system, a 3-D reconstruction matrix is built, so as to convert each measurement profile to the base coordinate system in turn, and finally a 3-D dynamic measurement method for the metallic sealing ring forming surface is built. The effectiveness of the proposed method is verified through simulation experiment and real measurement.
期刊介绍:
Measurement and Control publishes peer-reviewed practical and technical research and news pieces from both the science and engineering industry and academia. Whilst focusing more broadly on topics of relevance for practitioners in instrumentation and control, the journal also includes updates on both product and business announcements and information on technical advances.