{"title":"一种在嵌套环境中预测准确性测试的新方法","authors":"Jean-Yves Pitarakis","doi":"10.1017/s0266466623000154","DOIUrl":null,"url":null,"abstract":"We introduce a new approach for comparing the predictive accuracy of two nested models that bypasses the difficulties caused by the degeneracy of the asymptotic variance of forecast error loss differentials used in the construction of commonly used predictive comparison statistics. Our approach continues to rely on the out of sample mean squared error loss differentials between the two competing models, leads to nuisance parameter-free Gaussian asymptotics, and is shown to remain valid under flexible assumptions that can accommodate heteroskedasticity and the presence of mixed predictors (e.g., stationary and local to unit root). A local power analysis also establishes their ability to detect departures from the null in both stationary and persistent settings. Simulations calibrated to common economic and financial applications indicate that our methods have strong power with good size control across commonly encountered sample sizes.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":"18 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A NOVEL APPROACH TO PREDICTIVE ACCURACY TESTING IN NESTED ENVIRONMENTS\",\"authors\":\"Jean-Yves Pitarakis\",\"doi\":\"10.1017/s0266466623000154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new approach for comparing the predictive accuracy of two nested models that bypasses the difficulties caused by the degeneracy of the asymptotic variance of forecast error loss differentials used in the construction of commonly used predictive comparison statistics. Our approach continues to rely on the out of sample mean squared error loss differentials between the two competing models, leads to nuisance parameter-free Gaussian asymptotics, and is shown to remain valid under flexible assumptions that can accommodate heteroskedasticity and the presence of mixed predictors (e.g., stationary and local to unit root). A local power analysis also establishes their ability to detect departures from the null in both stationary and persistent settings. Simulations calibrated to common economic and financial applications indicate that our methods have strong power with good size control across commonly encountered sample sizes.\",\"PeriodicalId\":49275,\"journal\":{\"name\":\"Econometric Theory\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266466623000154\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0266466623000154","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
A NOVEL APPROACH TO PREDICTIVE ACCURACY TESTING IN NESTED ENVIRONMENTS
We introduce a new approach for comparing the predictive accuracy of two nested models that bypasses the difficulties caused by the degeneracy of the asymptotic variance of forecast error loss differentials used in the construction of commonly used predictive comparison statistics. Our approach continues to rely on the out of sample mean squared error loss differentials between the two competing models, leads to nuisance parameter-free Gaussian asymptotics, and is shown to remain valid under flexible assumptions that can accommodate heteroskedasticity and the presence of mixed predictors (e.g., stationary and local to unit root). A local power analysis also establishes their ability to detect departures from the null in both stationary and persistent settings. Simulations calibrated to common economic and financial applications indicate that our methods have strong power with good size control across commonly encountered sample sizes.
Econometric TheoryMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍:
Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.