自适应锚定参数下Halpern迭代的收敛性分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Songnian He, Hong-Kun Xu, Qiao-Li Dong, Na Mei
{"title":"自适应锚定参数下Halpern迭代的收敛性分析","authors":"Songnian He, Hong-Kun Xu, Qiao-Li Dong, Na Mei","doi":"10.1090/mcom/3851","DOIUrl":null,"url":null,"abstract":"We propose an adaptive way to choose the anchoring parameters for the Halpern iteration to find a fixed point of a nonexpansive mapping in a real Hilbert space. We prove strong convergence of this adaptive Halpern iteration and obtain the rate of asymptotic regularity at least <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 slash k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(1/k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of iterations. Numerical experiments are also provided to show advantages and outperformance of our adaptive Halpern algorithm over the standard Halpern algorithm.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of the Halpern iteration with adaptive anchoring parameters\",\"authors\":\"Songnian He, Hong-Kun Xu, Qiao-Li Dong, Na Mei\",\"doi\":\"10.1090/mcom/3851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an adaptive way to choose the anchoring parameters for the Halpern iteration to find a fixed point of a nonexpansive mapping in a real Hilbert space. We prove strong convergence of this adaptive Halpern iteration and obtain the rate of asymptotic regularity at least <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis 1 slash k right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(1/k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of iterations. Numerical experiments are also provided to show advantages and outperformance of our adaptive Halpern algorithm over the standard Halpern algorithm.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种自适应选择锚定参数的方法,用于在实数Hilbert空间中寻找非扩张映射的不动点。证明了该自适应Halpern迭代的强收敛性,得到了渐近正则性速率至少为O(1/k) O(1/k),其中k k为迭代次数。数值实验显示了自适应Halpern算法相对于标准Halpern算法的优点和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of the Halpern iteration with adaptive anchoring parameters
We propose an adaptive way to choose the anchoring parameters for the Halpern iteration to find a fixed point of a nonexpansive mapping in a real Hilbert space. We prove strong convergence of this adaptive Halpern iteration and obtain the rate of asymptotic regularity at least O ( 1 / k ) O(1/k) , where k k is the number of iterations. Numerical experiments are also provided to show advantages and outperformance of our adaptive Halpern algorithm over the standard Halpern algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信