{"title":"具有一般迁移率的Allen-Cahn方程的线性二阶最大界保原理BDF格式","authors":"Dianming Hou, Lili Ju, Zhonghua Qiao","doi":"10.1090/mcom/3843","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and analyze a linear second-order numerical method for solving the Allen-Cahn equation with a general mobility. The proposed fully-discrete scheme is carefully constructed based on the combination of first and second-order backward differentiation formulas with nonuniform time steps for temporal approximation and the central finite difference for spatial discretization. The discrete maximum bound principle is proved of the proposed scheme by using the kernel recombination technique under certain mild constraints on the time steps and the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^{1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> error estimate and energy stability for the classic constant mobility case and the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^{\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> error estimate for the general mobility case. Various numerical experiments are also presented to validate the theoretical results and demonstrate the performance of the proposed method with a time adaptive strategy.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A linear second-order maximum bound principle-preserving BDF scheme for the Allen-Cahn equation with a general mobility\",\"authors\":\"Dianming Hou, Lili Ju, Zhonghua Qiao\",\"doi\":\"10.1090/mcom/3843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and analyze a linear second-order numerical method for solving the Allen-Cahn equation with a general mobility. The proposed fully-discrete scheme is carefully constructed based on the combination of first and second-order backward differentiation formulas with nonuniform time steps for temporal approximation and the central finite difference for spatial discretization. The discrete maximum bound principle is proved of the proposed scheme by using the kernel recombination technique under certain mild constraints on the time steps and the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^{1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> error estimate and energy stability for the classic constant mobility case and the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript normal infinity\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^{\\\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> error estimate for the general mobility case. Various numerical experiments are also presented to validate the theoretical results and demonstrate the performance of the proposed method with a time adaptive strategy.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A linear second-order maximum bound principle-preserving BDF scheme for the Allen-Cahn equation with a general mobility
In this paper, we propose and analyze a linear second-order numerical method for solving the Allen-Cahn equation with a general mobility. The proposed fully-discrete scheme is carefully constructed based on the combination of first and second-order backward differentiation formulas with nonuniform time steps for temporal approximation and the central finite difference for spatial discretization. The discrete maximum bound principle is proved of the proposed scheme by using the kernel recombination technique under certain mild constraints on the time steps and the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete H1H^{1} error estimate and energy stability for the classic constant mobility case and the L∞L^{\infty } error estimate for the general mobility case. Various numerical experiments are also presented to validate the theoretical results and demonstrate the performance of the proposed method with a time adaptive strategy.