David A. A. Baranger, Megan C. Finsaas, Brandon L. Goldstein, Colin E. Vize, Donald R. Lynam, Thomas M. Olino
{"title":"教程:横截面回归中相互作用效应的功效分析","authors":"David A. A. Baranger, Megan C. Finsaas, Brandon L. Goldstein, Colin E. Vize, Donald R. Lynam, Thomas M. Olino","doi":"10.1177/25152459231187531","DOIUrl":null,"url":null,"abstract":"Interaction analyses (also termed “moderation” analyses or “moderated multiple regression”) are a form of linear regression analysis designed to test whether the association between two variables changes when conditioned on a third variable. It can be challenging to perform a power analysis for interactions with existing software, particularly when variables are correlated and continuous. Moreover, although power is affected by main effects, their correlation, and variable reliability, it can be unclear how to incorporate these effects into a power analysis. The R package InteractionPoweR and associated Shiny apps allow researchers with minimal or no programming experience to perform analytic and simulation-based power analyses for interactions. At minimum, these analyses require the Pearson’s correlation between variables and sample size, and additional parameters, including reliability and the number of discrete levels that a variable takes (e.g., binary or Likert scale), can optionally be specified. In this tutorial, we demonstrate how to perform power analyses using our package and give examples of how power can be affected by main effects, correlations between main effects, reliability, and variable distributions. We also include a brief discussion of how researchers may select an appropriate interaction effect size when performing a power analysis.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":"206 1","pages":"0"},"PeriodicalIF":15.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Tutorial: Power Analyses for Interaction Effects in Cross-Sectional Regressions\",\"authors\":\"David A. A. Baranger, Megan C. Finsaas, Brandon L. Goldstein, Colin E. Vize, Donald R. Lynam, Thomas M. Olino\",\"doi\":\"10.1177/25152459231187531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interaction analyses (also termed “moderation” analyses or “moderated multiple regression”) are a form of linear regression analysis designed to test whether the association between two variables changes when conditioned on a third variable. It can be challenging to perform a power analysis for interactions with existing software, particularly when variables are correlated and continuous. Moreover, although power is affected by main effects, their correlation, and variable reliability, it can be unclear how to incorporate these effects into a power analysis. The R package InteractionPoweR and associated Shiny apps allow researchers with minimal or no programming experience to perform analytic and simulation-based power analyses for interactions. At minimum, these analyses require the Pearson’s correlation between variables and sample size, and additional parameters, including reliability and the number of discrete levels that a variable takes (e.g., binary or Likert scale), can optionally be specified. In this tutorial, we demonstrate how to perform power analyses using our package and give examples of how power can be affected by main effects, correlations between main effects, reliability, and variable distributions. We also include a brief discussion of how researchers may select an appropriate interaction effect size when performing a power analysis.\",\"PeriodicalId\":55645,\"journal\":{\"name\":\"Advances in Methods and Practices in Psychological Science\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methods and Practices in Psychological Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25152459231187531\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25152459231187531","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
Tutorial: Power Analyses for Interaction Effects in Cross-Sectional Regressions
Interaction analyses (also termed “moderation” analyses or “moderated multiple regression”) are a form of linear regression analysis designed to test whether the association between two variables changes when conditioned on a third variable. It can be challenging to perform a power analysis for interactions with existing software, particularly when variables are correlated and continuous. Moreover, although power is affected by main effects, their correlation, and variable reliability, it can be unclear how to incorporate these effects into a power analysis. The R package InteractionPoweR and associated Shiny apps allow researchers with minimal or no programming experience to perform analytic and simulation-based power analyses for interactions. At minimum, these analyses require the Pearson’s correlation between variables and sample size, and additional parameters, including reliability and the number of discrete levels that a variable takes (e.g., binary or Likert scale), can optionally be specified. In this tutorial, we demonstrate how to perform power analyses using our package and give examples of how power can be affected by main effects, correlations between main effects, reliability, and variable distributions. We also include a brief discussion of how researchers may select an appropriate interaction effect size when performing a power analysis.
期刊介绍:
In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions.
The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science.
The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies.
Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.