数据驱动模型实验约束设计的拉丁超立方体

IF 0.7 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Fabian Schneider, Ralph J. Hellmig, Oliver Nelles
{"title":"数据驱动模型实验约束设计的拉丁超立方体","authors":"Fabian Schneider, Ralph J. Hellmig, Oliver Nelles","doi":"10.1515/auto-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract The quality of data used for data-driven modeling affects the model performance significantly. Thus, design of experiments (DoE) is an important part during model development. The design space is constrained in many applications. In this work, the constrained case is investigated. An Latin hypercube based approach is applied and analyzed for strongly constrained design spaces. Contrary to commonly used optimization techniques, an incremental procedure is proposed. In every step, new data are added to the design. Each new point is selected by a distance-based criterion. The performance of the created designs is evaluated by the quality of the trained models. For different constraints, artificial data sets are created with a function generator. The performance of local model networks and Gaussian process regression models trained with those designs is evaluated and compared to models trained on data sets based on Sobol’ sequences.","PeriodicalId":55437,"journal":{"name":"At-Automatisierungstechnik","volume":"19 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latin hypercubes for constrained design of experiments for data-driven models\",\"authors\":\"Fabian Schneider, Ralph J. Hellmig, Oliver Nelles\",\"doi\":\"10.1515/auto-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The quality of data used for data-driven modeling affects the model performance significantly. Thus, design of experiments (DoE) is an important part during model development. The design space is constrained in many applications. In this work, the constrained case is investigated. An Latin hypercube based approach is applied and analyzed for strongly constrained design spaces. Contrary to commonly used optimization techniques, an incremental procedure is proposed. In every step, new data are added to the design. Each new point is selected by a distance-based criterion. The performance of the created designs is evaluated by the quality of the trained models. For different constraints, artificial data sets are created with a function generator. The performance of local model networks and Gaussian process regression models trained with those designs is evaluated and compared to models trained on data sets based on Sobol’ sequences.\",\"PeriodicalId\":55437,\"journal\":{\"name\":\"At-Automatisierungstechnik\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"At-Automatisierungstechnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/auto-2023-0017\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"At-Automatisierungstechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/auto-2023-0017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动建模中使用的数据质量对模型的性能影响很大。因此,实验设计是模型开发过程中的一个重要环节。在许多应用程序中,设计空间受到限制。在这项工作中,研究了约束情况。应用拉丁超立方体方法对强约束设计空间进行了分析。与常用的优化技术相反,提出了一种增量过程。在每一步中,新的数据被添加到设计中。每个新点都是由基于距离的标准选择的。通过训练模型的质量来评估创建的设计的性能。对于不同的约束条件,使用函数生成器创建人工数据集。用这些设计训练的局部模型网络和高斯过程回归模型的性能进行了评估,并与基于Sobol序列的数据集训练的模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latin hypercubes for constrained design of experiments for data-driven models
Abstract The quality of data used for data-driven modeling affects the model performance significantly. Thus, design of experiments (DoE) is an important part during model development. The design space is constrained in many applications. In this work, the constrained case is investigated. An Latin hypercube based approach is applied and analyzed for strongly constrained design spaces. Contrary to commonly used optimization techniques, an incremental procedure is proposed. In every step, new data are added to the design. Each new point is selected by a distance-based criterion. The performance of the created designs is evaluated by the quality of the trained models. For different constraints, artificial data sets are created with a function generator. The performance of local model networks and Gaussian process regression models trained with those designs is evaluated and compared to models trained on data sets based on Sobol’ sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
At-Automatisierungstechnik
At-Automatisierungstechnik 工程技术-自动化与控制系统
CiteScore
2.00
自引率
10.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Automatisierungstechnik (AUTO) publishes articles covering the entire range of automation technology: development and application of methods, the operating principles, characteristics, and applications of tools and the interrelationships between automation technology and societal developments. The journal includes a tutorial series on "Theory for Users," and a forum for the exchange of viewpoints concerning past, present, and future developments. Automatisierungstechnik is the official organ of GMA (The VDI/VDE Society for Measurement and Automatic Control) and NAMUR (The Process-Industry Interest Group for Automation Technology). Topics control engineering digital measurement systems cybernetics robotics process automation / process engineering control design modelling information processing man-machine interfaces networked control systems complexity management machine learning ambient assisted living automated driving bio-analysis technology building automation factory automation / smart factories flexible manufacturing systems functional safety mechatronic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信