微生物谷氨酰胺转胺酶提高印尼本地羊肉香肠品质:理化、质构和微观结构特性

Q3 Agricultural and Biological Sciences
- Iswoyo, Juni Sumarmono, Triana Setyawardani
{"title":"微生物谷氨酰胺转胺酶提高印尼本地羊肉香肠品质:理化、质构和微观结构特性","authors":"- Iswoyo, Juni Sumarmono, Triana Setyawardani","doi":"10.18517/ijaseit.13.5.19210","DOIUrl":null,"url":null,"abstract":"Indonesia Batur local lamb meat has emerged as a promising meat source for the production of emulsion-type sausages. However, the manufacturing process of this sausage typically requires high-fat content to achieve the desired quality characteristics. To address this issue, this study investigates utilizing microbial transglutaminase (MTGase) enzyme to improve local lamb meat sausage's physicochemical, textural, and microstructure features. This research aimed to develop emulsion sausages using local lamb meat by incorporating the MTGase enzyme. The experimental design encompassed various treatments, including a control group, the addition of 10% tapioca, and incremental amounts of MTGase (ranging from 0.2% to 1.0%). The sausages were evaluated comprehensively: pH value, color, tenderness, texture, and microstructure. The statistical analysis, employing ANOVA, demonstrated a significant improvement in pH, firmness, toughness, cohesiveness, and gumminess with the addition of MTGase, while also influencing the color of the sausages (P<0.05) that can be attributed to the MTGase enzyme's capacity to bind myofibrillar proteins through cross-linking reactions, enhancing texture and tenderness. Nevertheless, it was noticed that the presence of MTGase led to a* and b* values reduction due to the denaturation of globin and carotenoid pigments; however, these values remained within an acceptable range. Notably, the incorporation of 0.8% and 1.0% MTGase resulted in forming an ordered and homogeneous network microstructure, exhibiting fewer voids within the sausages. Overall, the findings of this study demonstrate the successful enhancement of the quality of sausages, thereby significantly increasing the acceptability of the final product.","PeriodicalId":14471,"journal":{"name":"International Journal on Advanced Science, Engineering and Information Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Sausage Quality of Indonesian Local Lamb Meat with Microbial Transglutaminase Enzyme: Physicochemical, Textural, and Microstructure Properties\",\"authors\":\"- Iswoyo, Juni Sumarmono, Triana Setyawardani\",\"doi\":\"10.18517/ijaseit.13.5.19210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesia Batur local lamb meat has emerged as a promising meat source for the production of emulsion-type sausages. However, the manufacturing process of this sausage typically requires high-fat content to achieve the desired quality characteristics. To address this issue, this study investigates utilizing microbial transglutaminase (MTGase) enzyme to improve local lamb meat sausage's physicochemical, textural, and microstructure features. This research aimed to develop emulsion sausages using local lamb meat by incorporating the MTGase enzyme. The experimental design encompassed various treatments, including a control group, the addition of 10% tapioca, and incremental amounts of MTGase (ranging from 0.2% to 1.0%). The sausages were evaluated comprehensively: pH value, color, tenderness, texture, and microstructure. The statistical analysis, employing ANOVA, demonstrated a significant improvement in pH, firmness, toughness, cohesiveness, and gumminess with the addition of MTGase, while also influencing the color of the sausages (P<0.05) that can be attributed to the MTGase enzyme's capacity to bind myofibrillar proteins through cross-linking reactions, enhancing texture and tenderness. Nevertheless, it was noticed that the presence of MTGase led to a* and b* values reduction due to the denaturation of globin and carotenoid pigments; however, these values remained within an acceptable range. Notably, the incorporation of 0.8% and 1.0% MTGase resulted in forming an ordered and homogeneous network microstructure, exhibiting fewer voids within the sausages. Overall, the findings of this study demonstrate the successful enhancement of the quality of sausages, thereby significantly increasing the acceptability of the final product.\",\"PeriodicalId\":14471,\"journal\":{\"name\":\"International Journal on Advanced Science, Engineering and Information Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Advanced Science, Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18517/ijaseit.13.5.19210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Advanced Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18517/ijaseit.13.5.19210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

印尼巴图尔当地的羊肉已经成为生产乳状香肠的有前途的肉类来源。然而,这种香肠的制造过程通常需要高脂肪含量才能达到所需的质量特征。为了解决这一问题,本研究探讨了利用微生物谷氨酰胺转胺酶(mtase)改善当地羊肉肠的理化、质地和微观结构特征。这项研究的目的是通过加入MTGase酶来开发使用当地羊肉的乳化液香肠。试验设计包括不同的处理,包括一个对照组,添加10%的木薯粉,增加MTGase的量(从0.2%到1.0%)。对香肠进行了综合评估:pH值、颜色、嫩度、质地和微观结构。采用方差分析的统计分析表明,添加MTGase显著改善了香肠的pH值、硬度、韧性、内聚性和粘性,同时也影响了香肠的颜色(P<0.05),这可归因于MTGase酶通过交联反应结合肌纤维蛋白的能力,增强了质地和嫩度。然而,我们注意到MTGase的存在导致a*和b*值的降低,这是由于珠蛋白和类胡萝卜素色素的变性;但是,这些值仍然在可接受的范围内。值得注意的是,掺入0.8%和1.0%的mgase导致香肠形成有序均匀的网络微观结构,在香肠中显示出更少的空隙。总的来说,这项研究的结果证明了香肠质量的成功提高,从而显著提高了最终产品的可接受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Sausage Quality of Indonesian Local Lamb Meat with Microbial Transglutaminase Enzyme: Physicochemical, Textural, and Microstructure Properties
Indonesia Batur local lamb meat has emerged as a promising meat source for the production of emulsion-type sausages. However, the manufacturing process of this sausage typically requires high-fat content to achieve the desired quality characteristics. To address this issue, this study investigates utilizing microbial transglutaminase (MTGase) enzyme to improve local lamb meat sausage's physicochemical, textural, and microstructure features. This research aimed to develop emulsion sausages using local lamb meat by incorporating the MTGase enzyme. The experimental design encompassed various treatments, including a control group, the addition of 10% tapioca, and incremental amounts of MTGase (ranging from 0.2% to 1.0%). The sausages were evaluated comprehensively: pH value, color, tenderness, texture, and microstructure. The statistical analysis, employing ANOVA, demonstrated a significant improvement in pH, firmness, toughness, cohesiveness, and gumminess with the addition of MTGase, while also influencing the color of the sausages (P<0.05) that can be attributed to the MTGase enzyme's capacity to bind myofibrillar proteins through cross-linking reactions, enhancing texture and tenderness. Nevertheless, it was noticed that the presence of MTGase led to a* and b* values reduction due to the denaturation of globin and carotenoid pigments; however, these values remained within an acceptable range. Notably, the incorporation of 0.8% and 1.0% MTGase resulted in forming an ordered and homogeneous network microstructure, exhibiting fewer voids within the sausages. Overall, the findings of this study demonstrate the successful enhancement of the quality of sausages, thereby significantly increasing the acceptability of the final product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal on Advanced Science, Engineering and Information Technology
International Journal on Advanced Science, Engineering and Information Technology Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.40
自引率
0.00%
发文量
272
期刊介绍: International Journal on Advanced Science, Engineering and Information Technology (IJASEIT) is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of science, engineering and information technology. The journal publishes state-of-art papers in fundamental theory, experiments and simulation, as well as applications, with a systematic proposed method, sufficient review on previous works, expanded discussion and concise conclusion. As our commitment to the advancement of science and technology, the IJASEIT follows the open access policy that allows the published articles freely available online without any subscription. The journal scopes include (but not limited to) the followings: -Science: Bioscience & Biotechnology. Chemistry & Food Technology, Environmental, Health Science, Mathematics & Statistics, Applied Physics -Engineering: Architecture, Chemical & Process, Civil & structural, Electrical, Electronic & Systems, Geological & Mining Engineering, Mechanical & Materials -Information Science & Technology: Artificial Intelligence, Computer Science, E-Learning & Multimedia, Information System, Internet & Mobile Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信