{"title":"稀疏跟踪测试","authors":"Taylor Brysiewicz, Michael Burr","doi":"10.1090/mcom/3849","DOIUrl":null,"url":null,"abstract":"We establish how the coefficients of a sparse polynomial system influence the sum (or the trace) of its zeros. As an application, we develop numerical tests for verifying whether a set of solutions to a sparse system is complete. These algorithms extend the classical trace test in numerical algebraic geometry. Our results rely on both the analysis of the structure of sparse resultants as well as an extension of Esterov’s results on monodromy groups of sparse systems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse trace tests\",\"authors\":\"Taylor Brysiewicz, Michael Burr\",\"doi\":\"10.1090/mcom/3849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish how the coefficients of a sparse polynomial system influence the sum (or the trace) of its zeros. As an application, we develop numerical tests for verifying whether a set of solutions to a sparse system is complete. These algorithms extend the classical trace test in numerical algebraic geometry. Our results rely on both the analysis of the structure of sparse resultants as well as an extension of Esterov’s results on monodromy groups of sparse systems.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
We establish how the coefficients of a sparse polynomial system influence the sum (or the trace) of its zeros. As an application, we develop numerical tests for verifying whether a set of solutions to a sparse system is complete. These algorithms extend the classical trace test in numerical algebraic geometry. Our results rely on both the analysis of the structure of sparse resultants as well as an extension of Esterov’s results on monodromy groups of sparse systems.