Katelyn Hustus, Cristina Díez-Vives, Konstantina Mitsi, Jasmine Nutakki, Victor Kering, Ivy T. Nguyen, Mayra Gomes Spencer, Sally P. Leys, Malcolm S. Hill, Ana Riesgo, April L. Hill
{"title":"淡水海绵棘藻的共生藻类","authors":"Katelyn Hustus, Cristina Díez-Vives, Konstantina Mitsi, Jasmine Nutakki, Victor Kering, Ivy T. Nguyen, Mayra Gomes Spencer, Sally P. Leys, Malcolm S. Hill, Ana Riesgo, April L. Hill","doi":"10.1007/s13199-023-00934-8","DOIUrl":null,"url":null,"abstract":"Abstract The freshwater sponge, Ephydatia muelleri , is an emerging model system for studying animal:microbe symbioses. Intracellular green microalgae are one of the more common symbionts that live in a facultative mutualism with E. muelleri . While these symbioses have long been known, the identity of the algal symbionts in E. muelleri cells has not been studied in detail. Here, we isolate and characterize endosymbiotic algae from E. muelleri collected from different geographic locations. We find that the algae can be transmitted through asexually produced gemmules and importantly that they can form symbioses with different, differentiated sponge cell types in the adult sponge. Our findings indicate that at least two algal lineages form endosymbioses with E. muelleri . One of the lineages includes species commonly found in samples from two locations in Canada and one in the United States (clade 1: closely related to Auxenochlorella pyrenoidosa ). The other clade includes algae found in sponges from one site in Maine, USA, and Lewiniosphaera symbiontica , which is a strain isolated in 1956 from the freshwater sponge Spongilla . We compared microbiomes found in cultures of microalgae as well as the original sponge hosts, and found that very similar bacterial microbiomes associate with both clades (91 orders of Bacteria are shared among the samples we compared). The microbiomes found in the cultures resemble, with a high degree of overlap, the microbiome associated with the sponge host.","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"24 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algal symbionts of the freshwater sponge Ephydatia muelleri\",\"authors\":\"Katelyn Hustus, Cristina Díez-Vives, Konstantina Mitsi, Jasmine Nutakki, Victor Kering, Ivy T. Nguyen, Mayra Gomes Spencer, Sally P. Leys, Malcolm S. Hill, Ana Riesgo, April L. Hill\",\"doi\":\"10.1007/s13199-023-00934-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The freshwater sponge, Ephydatia muelleri , is an emerging model system for studying animal:microbe symbioses. Intracellular green microalgae are one of the more common symbionts that live in a facultative mutualism with E. muelleri . While these symbioses have long been known, the identity of the algal symbionts in E. muelleri cells has not been studied in detail. Here, we isolate and characterize endosymbiotic algae from E. muelleri collected from different geographic locations. We find that the algae can be transmitted through asexually produced gemmules and importantly that they can form symbioses with different, differentiated sponge cell types in the adult sponge. Our findings indicate that at least two algal lineages form endosymbioses with E. muelleri . One of the lineages includes species commonly found in samples from two locations in Canada and one in the United States (clade 1: closely related to Auxenochlorella pyrenoidosa ). The other clade includes algae found in sponges from one site in Maine, USA, and Lewiniosphaera symbiontica , which is a strain isolated in 1956 from the freshwater sponge Spongilla . We compared microbiomes found in cultures of microalgae as well as the original sponge hosts, and found that very similar bacterial microbiomes associate with both clades (91 orders of Bacteria are shared among the samples we compared). The microbiomes found in the cultures resemble, with a high degree of overlap, the microbiome associated with the sponge host.\",\"PeriodicalId\":22123,\"journal\":{\"name\":\"Symbiosis\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbiosis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13199-023-00934-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbiosis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13199-023-00934-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Algal symbionts of the freshwater sponge Ephydatia muelleri
Abstract The freshwater sponge, Ephydatia muelleri , is an emerging model system for studying animal:microbe symbioses. Intracellular green microalgae are one of the more common symbionts that live in a facultative mutualism with E. muelleri . While these symbioses have long been known, the identity of the algal symbionts in E. muelleri cells has not been studied in detail. Here, we isolate and characterize endosymbiotic algae from E. muelleri collected from different geographic locations. We find that the algae can be transmitted through asexually produced gemmules and importantly that they can form symbioses with different, differentiated sponge cell types in the adult sponge. Our findings indicate that at least two algal lineages form endosymbioses with E. muelleri . One of the lineages includes species commonly found in samples from two locations in Canada and one in the United States (clade 1: closely related to Auxenochlorella pyrenoidosa ). The other clade includes algae found in sponges from one site in Maine, USA, and Lewiniosphaera symbiontica , which is a strain isolated in 1956 from the freshwater sponge Spongilla . We compared microbiomes found in cultures of microalgae as well as the original sponge hosts, and found that very similar bacterial microbiomes associate with both clades (91 orders of Bacteria are shared among the samples we compared). The microbiomes found in the cultures resemble, with a high degree of overlap, the microbiome associated with the sponge host.
期刊介绍:
Since 1985, Symbiosis publishes original research that contributes to the understanding of symbiotic interactions in a wide range of associations at the molecular, cellular and organismic level. Reviews and short communications on well-known or new symbioses are welcomed as are book reviews and obituaries. This spectrum of papers aims to encourage and enhance interactions among researchers in this rapidly expanding field.
Topics of interest include nutritional interactions; mutual regulatory and morphogenetic effects; structural co-adaptations; interspecific recognition; specificity; ecological adaptations; evolutionary consequences of symbiosis; and methods used for symbiotic research.