后量子联想记忆

Ludovico Lami, Daniel Goldwater, Gerardo Adesso
{"title":"后量子联想记忆","authors":"Ludovico Lami, Daniel Goldwater, Gerardo Adesso","doi":"10.1088/1751-8121/acfeb7","DOIUrl":null,"url":null,"abstract":"Abstract Associative memories are devices storing information that can be fully retrieved given partial disclosure of it. We examine a toy model of associative memory and the ultimate limitations to which it is subjected within the framework of general probabilistic theories (GPTs), which represent the most general class of physical theories satisfying some basic operational axioms. We ask ourselves how large the dimension of a GPT should be so that it can accommodate 2 m states with the property that any N of them are perfectly distinguishable. Call <?CDATA $d(N,m)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> the minimal such dimension. Invoking an old result by Danzer and Grünbaum, we prove that <?CDATA $d(2,m) = m+1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:math> , to be compared with <?CDATA $O(2^m)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> when the GPT is required to be either classical or quantum. This yields an example of a task where GPTs outperform both classical and quantum theory exponentially. More generally, we resolve the case of fixed N and asymptotically large m , proving that <?CDATA $d(N,m) \\unicode{x2A7D} m^{1+o_N(1)}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mtext>⩽</mml:mtext> <mml:msup> <mml:mi>m</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>o</mml:mi> <mml:mi>N</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> </mml:math> (as <?CDATA $m\\to\\infty$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>m</mml:mi> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:math> ) for every <?CDATA $N\\unicode{x2A7E} 2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>N</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>2</mml:mn> </mml:math> , which yields again an exponential improvement over classical and quantum theories. Finally, we develop a numerical approach to the general problem of finding the largest N -wise mutually distinguishable set for a given GPT, which can be seen as an instance of the maximum clique problem on N -regular hypergraphs.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A post-quantum associative memory\",\"authors\":\"Ludovico Lami, Daniel Goldwater, Gerardo Adesso\",\"doi\":\"10.1088/1751-8121/acfeb7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Associative memories are devices storing information that can be fully retrieved given partial disclosure of it. We examine a toy model of associative memory and the ultimate limitations to which it is subjected within the framework of general probabilistic theories (GPTs), which represent the most general class of physical theories satisfying some basic operational axioms. We ask ourselves how large the dimension of a GPT should be so that it can accommodate 2 m states with the property that any N of them are perfectly distinguishable. Call <?CDATA $d(N,m)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>d</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> the minimal such dimension. Invoking an old result by Danzer and Grünbaum, we prove that <?CDATA $d(2,m) = m+1$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>d</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:math> , to be compared with <?CDATA $O(2^m)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> when the GPT is required to be either classical or quantum. This yields an example of a task where GPTs outperform both classical and quantum theory exponentially. More generally, we resolve the case of fixed N and asymptotically large m , proving that <?CDATA $d(N,m) \\\\unicode{x2A7D} m^{1+o_N(1)}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>d</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mtext>⩽</mml:mtext> <mml:msup> <mml:mi>m</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>o</mml:mi> <mml:mi>N</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> </mml:math> (as <?CDATA $m\\\\to\\\\infty$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>m</mml:mi> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:math> ) for every <?CDATA $N\\\\unicode{x2A7E} 2$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>N</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>2</mml:mn> </mml:math> , which yields again an exponential improvement over classical and quantum theories. Finally, we develop a numerical approach to the general problem of finding the largest N -wise mutually distinguishable set for a given GPT, which can be seen as an instance of the maximum clique problem on N -regular hypergraphs.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfeb7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfeb7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

联想记忆是一种存储信息的装置,它可以在部分披露的情况下被完全检索。我们研究了联想记忆的一个玩具模型,以及它在一般概率论(GPTs)框架内受到的最终限制,GPTs代表了满足一些基本操作公理的最一般的物理理论。我们问自己,GPT的维度应该有多大,才能容纳2m个状态,并且其中任意N个状态都是完全可区分的。称d (N, m)为最小维数。引用Danzer和gr nbaum的旧结果,我们证明了d (2, m) = m + 1,当GPT被要求是经典的或量子的时,与O (2 m)进行比较。这就产生了一个任务的例子,其中gpt的表现都以指数方式优于经典理论和量子理论。更一般地说,我们解决了固定N和渐近大m的情况,证明对于每个N大于或等于2,d (N, m)≥m 1 + o N(1)(作为m→∞),这再次产生了比经典理论和量子理论的指数改进。最后,我们提出了一种求解给定GPT的最大N -明智互可分辨集的一般问题的数值方法,这可以看作是N -正则超图上最大团问题的一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A post-quantum associative memory
Abstract Associative memories are devices storing information that can be fully retrieved given partial disclosure of it. We examine a toy model of associative memory and the ultimate limitations to which it is subjected within the framework of general probabilistic theories (GPTs), which represent the most general class of physical theories satisfying some basic operational axioms. We ask ourselves how large the dimension of a GPT should be so that it can accommodate 2 m states with the property that any N of them are perfectly distinguishable. Call d ( N , m ) the minimal such dimension. Invoking an old result by Danzer and Grünbaum, we prove that d ( 2 , m ) = m + 1 , to be compared with O ( 2 m ) when the GPT is required to be either classical or quantum. This yields an example of a task where GPTs outperform both classical and quantum theory exponentially. More generally, we resolve the case of fixed N and asymptotically large m , proving that d ( N , m ) m 1 + o N ( 1 ) (as m ) for every N 2 , which yields again an exponential improvement over classical and quantum theories. Finally, we develop a numerical approach to the general problem of finding the largest N -wise mutually distinguishable set for a given GPT, which can be seen as an instance of the maximum clique problem on N -regular hypergraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信