Judit Gárdos, Julia Egyed-Gergely, Anna Horváth, Balázs Pataki, Roza Vajda, András Micsik
{"title":"访谈资料库中社会科学相关主题的识别:自然语言处理实验","authors":"Judit Gárdos, Julia Egyed-Gergely, Anna Horváth, Balázs Pataki, Roza Vajda, András Micsik","doi":"10.1108/jd-12-2022-0269","DOIUrl":null,"url":null,"abstract":"Purpose The present study is about generating metadata to enhance thematic transparency and facilitate research on interview collections at the Research Documentation Centre, Centre for Social Sciences (TK KDK) in Budapest. It explores the use of artificial intelligence (AI) in producing, managing and processing social science data and its potential to generate useful metadata to describe the contents of such archives on a large scale. Design/methodology/approach The authors combined manual and automated/semi-automated methods of metadata development and curation. The authors developed a suitable domain-oriented taxonomy to classify a large text corpus of semi-structured interviews. To this end, the authors adapted the European Language Social Science Thesaurus (ELSST) to produce a concise, hierarchical structure of topics relevant in social sciences. The authors identified and tested the most promising natural language processing (NLP) tools supporting the Hungarian language. The results of manual and machine coding will be presented in a user interface. Findings The study describes how an international social scientific taxonomy can be adapted to a specific local setting and tailored to be used by automated NLP tools. The authors show the potential and limitations of existing and new NLP methods for thematic assignment. The current possibilities of multi-label classification in social scientific metadata assignment are discussed, i.e. the problem of automated selection of relevant labels from a large pool. Originality/value Interview materials have not yet been used for building manually annotated training datasets for automated indexing of scientifically relevant topics in a data repository. Comparing various automated-indexing methods, this study shows a possible implementation of a researcher tool supporting custom visualizations and the faceted search of interview collections.","PeriodicalId":47969,"journal":{"name":"Journal of Documentation","volume":"17 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of social scientifically relevant topics in an interview repository: a natural language processing experiment\",\"authors\":\"Judit Gárdos, Julia Egyed-Gergely, Anna Horváth, Balázs Pataki, Roza Vajda, András Micsik\",\"doi\":\"10.1108/jd-12-2022-0269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose The present study is about generating metadata to enhance thematic transparency and facilitate research on interview collections at the Research Documentation Centre, Centre for Social Sciences (TK KDK) in Budapest. It explores the use of artificial intelligence (AI) in producing, managing and processing social science data and its potential to generate useful metadata to describe the contents of such archives on a large scale. Design/methodology/approach The authors combined manual and automated/semi-automated methods of metadata development and curation. The authors developed a suitable domain-oriented taxonomy to classify a large text corpus of semi-structured interviews. To this end, the authors adapted the European Language Social Science Thesaurus (ELSST) to produce a concise, hierarchical structure of topics relevant in social sciences. The authors identified and tested the most promising natural language processing (NLP) tools supporting the Hungarian language. The results of manual and machine coding will be presented in a user interface. Findings The study describes how an international social scientific taxonomy can be adapted to a specific local setting and tailored to be used by automated NLP tools. The authors show the potential and limitations of existing and new NLP methods for thematic assignment. The current possibilities of multi-label classification in social scientific metadata assignment are discussed, i.e. the problem of automated selection of relevant labels from a large pool. Originality/value Interview materials have not yet been used for building manually annotated training datasets for automated indexing of scientifically relevant topics in a data repository. Comparing various automated-indexing methods, this study shows a possible implementation of a researcher tool supporting custom visualizations and the faceted search of interview collections.\",\"PeriodicalId\":47969,\"journal\":{\"name\":\"Journal of Documentation\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Documentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jd-12-2022-0269\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Documentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jd-12-2022-0269","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Identification of social scientifically relevant topics in an interview repository: a natural language processing experiment
Purpose The present study is about generating metadata to enhance thematic transparency and facilitate research on interview collections at the Research Documentation Centre, Centre for Social Sciences (TK KDK) in Budapest. It explores the use of artificial intelligence (AI) in producing, managing and processing social science data and its potential to generate useful metadata to describe the contents of such archives on a large scale. Design/methodology/approach The authors combined manual and automated/semi-automated methods of metadata development and curation. The authors developed a suitable domain-oriented taxonomy to classify a large text corpus of semi-structured interviews. To this end, the authors adapted the European Language Social Science Thesaurus (ELSST) to produce a concise, hierarchical structure of topics relevant in social sciences. The authors identified and tested the most promising natural language processing (NLP) tools supporting the Hungarian language. The results of manual and machine coding will be presented in a user interface. Findings The study describes how an international social scientific taxonomy can be adapted to a specific local setting and tailored to be used by automated NLP tools. The authors show the potential and limitations of existing and new NLP methods for thematic assignment. The current possibilities of multi-label classification in social scientific metadata assignment are discussed, i.e. the problem of automated selection of relevant labels from a large pool. Originality/value Interview materials have not yet been used for building manually annotated training datasets for automated indexing of scientifically relevant topics in a data repository. Comparing various automated-indexing methods, this study shows a possible implementation of a researcher tool supporting custom visualizations and the faceted search of interview collections.
期刊介绍:
The scope of the Journal of Documentation is broadly information sciences, encompassing all of the academic and professional disciplines which deal with recorded information. These include, but are certainly not limited to: ■Information science, librarianship and related disciplines ■Information and knowledge management ■Information and knowledge organisation ■Information seeking and retrieval, and human information behaviour ■Information and digital literacies