{"title":"通过水电解实现可持续制氢的节能阳极反应","authors":"Wenxian Liu, Xinxin Niu, Jiawei Tang, Qian Liu, Jun Luo, Xijun Liu, Yingtang Zhou","doi":"10.20517/cs.2023.28","DOIUrl":null,"url":null,"abstract":"Overall water splitting is considered as an effective technique for hydrogen (H2) production; however, it usually requires large operating voltage mainly due to the high equilibrium potential of the anodic oxygen evolution reaction (OER). Replacing OER with energy-saving anode reactions not only reduces the operating voltage for H2 production but also generates high-value-added chemicals or purifies wastewater. This review article provides an overview of the fundamental reaction principles of overall water splitting and typical energy-saving alternative anode reactions, including methanol oxidation, hydrazine oxidation, and urea oxidation reactions. Then, the preparation methods, regulation strategies, and composition/structure-performance relations of advanced catalysts for these energy-efficient H2 generation technologies are discussed. Finally, we propose the underlying challenges and perspectives for this promising field.","PeriodicalId":381136,"journal":{"name":"Chemical Synthesis","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis\",\"authors\":\"Wenxian Liu, Xinxin Niu, Jiawei Tang, Qian Liu, Jun Luo, Xijun Liu, Yingtang Zhou\",\"doi\":\"10.20517/cs.2023.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overall water splitting is considered as an effective technique for hydrogen (H2) production; however, it usually requires large operating voltage mainly due to the high equilibrium potential of the anodic oxygen evolution reaction (OER). Replacing OER with energy-saving anode reactions not only reduces the operating voltage for H2 production but also generates high-value-added chemicals or purifies wastewater. This review article provides an overview of the fundamental reaction principles of overall water splitting and typical energy-saving alternative anode reactions, including methanol oxidation, hydrazine oxidation, and urea oxidation reactions. Then, the preparation methods, regulation strategies, and composition/structure-performance relations of advanced catalysts for these energy-efficient H2 generation technologies are discussed. Finally, we propose the underlying challenges and perspectives for this promising field.\",\"PeriodicalId\":381136,\"journal\":{\"name\":\"Chemical Synthesis\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/cs.2023.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/cs.2023.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis
Overall water splitting is considered as an effective technique for hydrogen (H2) production; however, it usually requires large operating voltage mainly due to the high equilibrium potential of the anodic oxygen evolution reaction (OER). Replacing OER with energy-saving anode reactions not only reduces the operating voltage for H2 production but also generates high-value-added chemicals or purifies wastewater. This review article provides an overview of the fundamental reaction principles of overall water splitting and typical energy-saving alternative anode reactions, including methanol oxidation, hydrazine oxidation, and urea oxidation reactions. Then, the preparation methods, regulation strategies, and composition/structure-performance relations of advanced catalysts for these energy-efficient H2 generation technologies are discussed. Finally, we propose the underlying challenges and perspectives for this promising field.