间隔良好的自由费米子系统的对数负性和谱

Eldad Bettelheim
{"title":"间隔良好的自由费米子系统的对数负性和谱","authors":"Eldad Bettelheim","doi":"10.1088/1751-8121/acff9c","DOIUrl":null,"url":null,"abstract":"Abstract We employ a mathematical framework based on the Riemann-Hilbert approach developed by Bettelheim et al (2022 J. Phys. A: Math. Gen. 55 135001) to study logarithmic negativity of two intervals of free fermions in the case where the size of the intervals as well as the distance between them is macroscopic. We find that none of the eigenvalues of the density matrix become negative, but rather they develop a small imaginary value, leading to non-zero logarithmic negativity. As an example, we compute negativity at half-filling and for intervals of equal size we find a result of order <?CDATA $(\\log(N))^{-1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>log</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where N is the typical length scale in units of the lattice spacing. One may compute logarithmic negativity in further situations, but we find that the results are non-universal, depending non-smoothly on the Fermi level and the size of the intervals in units of the lattice spacing.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic negativity and spectrum in free fermionic systems for well-separated intervals\",\"authors\":\"Eldad Bettelheim\",\"doi\":\"10.1088/1751-8121/acff9c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We employ a mathematical framework based on the Riemann-Hilbert approach developed by Bettelheim et al (2022 J. Phys. A: Math. Gen. 55 135001) to study logarithmic negativity of two intervals of free fermions in the case where the size of the intervals as well as the distance between them is macroscopic. We find that none of the eigenvalues of the density matrix become negative, but rather they develop a small imaginary value, leading to non-zero logarithmic negativity. As an example, we compute negativity at half-filling and for intervals of equal size we find a result of order <?CDATA $(\\\\log(N))^{-1}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>log</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where N is the typical length scale in units of the lattice spacing. One may compute logarithmic negativity in further situations, but we find that the results are non-universal, depending non-smoothly on the Fermi level and the size of the intervals in units of the lattice spacing.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acff9c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acff9c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们采用了一个基于Riemann-Hilbert方法的数学框架,该方法由Bettelheim等人(2022 J. Phys)开发。答:数学。(gen 55 135001)来研究两个自由费米子区间的对数负性,在这种情况下,区间的大小以及它们之间的距离是宏观的。我们发现密度矩阵的特征值都不是负的,而是形成一个小的虚值,导致非零对数负。作为一个例子,我们在半填充时计算负性,对于相同大小的间隔,我们发现结果为(log (N))−1阶,其中N是晶格间距单位的典型长度尺度。人们可以在进一步的情况下计算对数负性,但我们发现结果是非普遍的,非平滑地依赖于费米能级和晶格间距单位间隔的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic negativity and spectrum in free fermionic systems for well-separated intervals
Abstract We employ a mathematical framework based on the Riemann-Hilbert approach developed by Bettelheim et al (2022 J. Phys. A: Math. Gen. 55 135001) to study logarithmic negativity of two intervals of free fermions in the case where the size of the intervals as well as the distance between them is macroscopic. We find that none of the eigenvalues of the density matrix become negative, but rather they develop a small imaginary value, leading to non-zero logarithmic negativity. As an example, we compute negativity at half-filling and for intervals of equal size we find a result of order ( log ( N ) ) 1 , where N is the typical length scale in units of the lattice spacing. One may compute logarithmic negativity in further situations, but we find that the results are non-universal, depending non-smoothly on the Fermi level and the size of the intervals in units of the lattice spacing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信