{"title":"间隔良好的自由费米子系统的对数负性和谱","authors":"Eldad Bettelheim","doi":"10.1088/1751-8121/acff9c","DOIUrl":null,"url":null,"abstract":"Abstract We employ a mathematical framework based on the Riemann-Hilbert approach developed by Bettelheim et al (2022 J. Phys. A: Math. Gen. 55 135001) to study logarithmic negativity of two intervals of free fermions in the case where the size of the intervals as well as the distance between them is macroscopic. We find that none of the eigenvalues of the density matrix become negative, but rather they develop a small imaginary value, leading to non-zero logarithmic negativity. As an example, we compute negativity at half-filling and for intervals of equal size we find a result of order <?CDATA $(\\log(N))^{-1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>log</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where N is the typical length scale in units of the lattice spacing. One may compute logarithmic negativity in further situations, but we find that the results are non-universal, depending non-smoothly on the Fermi level and the size of the intervals in units of the lattice spacing.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic negativity and spectrum in free fermionic systems for well-separated intervals\",\"authors\":\"Eldad Bettelheim\",\"doi\":\"10.1088/1751-8121/acff9c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We employ a mathematical framework based on the Riemann-Hilbert approach developed by Bettelheim et al (2022 J. Phys. A: Math. Gen. 55 135001) to study logarithmic negativity of two intervals of free fermions in the case where the size of the intervals as well as the distance between them is macroscopic. We find that none of the eigenvalues of the density matrix become negative, but rather they develop a small imaginary value, leading to non-zero logarithmic negativity. As an example, we compute negativity at half-filling and for intervals of equal size we find a result of order <?CDATA $(\\\\log(N))^{-1}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>log</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where N is the typical length scale in units of the lattice spacing. One may compute logarithmic negativity in further situations, but we find that the results are non-universal, depending non-smoothly on the Fermi level and the size of the intervals in units of the lattice spacing.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acff9c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acff9c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们采用了一个基于Riemann-Hilbert方法的数学框架,该方法由Bettelheim等人(2022 J. Phys)开发。答:数学。(gen 55 135001)来研究两个自由费米子区间的对数负性,在这种情况下,区间的大小以及它们之间的距离是宏观的。我们发现密度矩阵的特征值都不是负的,而是形成一个小的虚值,导致非零对数负。作为一个例子,我们在半填充时计算负性,对于相同大小的间隔,我们发现结果为(log (N))−1阶,其中N是晶格间距单位的典型长度尺度。人们可以在进一步的情况下计算对数负性,但我们发现结果是非普遍的,非平滑地依赖于费米能级和晶格间距单位间隔的大小。
Logarithmic negativity and spectrum in free fermionic systems for well-separated intervals
Abstract We employ a mathematical framework based on the Riemann-Hilbert approach developed by Bettelheim et al (2022 J. Phys. A: Math. Gen. 55 135001) to study logarithmic negativity of two intervals of free fermions in the case where the size of the intervals as well as the distance between them is macroscopic. We find that none of the eigenvalues of the density matrix become negative, but rather they develop a small imaginary value, leading to non-zero logarithmic negativity. As an example, we compute negativity at half-filling and for intervals of equal size we find a result of order (log(N))−1 , where N is the typical length scale in units of the lattice spacing. One may compute logarithmic negativity in further situations, but we find that the results are non-universal, depending non-smoothly on the Fermi level and the size of the intervals in units of the lattice spacing.