径流预测的深度学习方法:评估摩洛哥Ouergha盆地捕获极端流量事件的长短期记忆神经网络架构

Q4 Environmental Science
Nourelhouda Karmouda, Tarik Bouramtane, Mounia TAHIRI, Ilias Kacimi, Marc Leblanc, Nadia Kassou
{"title":"径流预测的深度学习方法:评估摩洛哥Ouergha盆地捕获极端流量事件的长短期记忆神经网络架构","authors":"Nourelhouda Karmouda, Tarik Bouramtane, Mounia TAHIRI, Ilias Kacimi, Marc Leblanc, Nadia Kassou","doi":"10.12912/27197050/174146","DOIUrl":null,"url":null,"abstract":"Rainfall-runoff modeling plays a crucial role in achieving efficient water resource management and flood forecast - ing, particularly in the context of increasing intensity and frequency of extreme meteorological events induced by climate change. Therefore, the aim of this research is to assess the accuracy of the Long-Short-Term Memory (LSTM) neural networks and the impact of its architecture in predicting runoff, with a particular focus on capturing extreme hydrological discharges in the Ouergha basin; a Moroccan Mediterranean basin with historical implica - tions in many cases of flooding; using solely daily rainfall and runoff data for training. For this purpose, three LSTM models of different depths were constructed, namely LSTM 1 single-layer, LSTM 2 bi-layer, and LSTM 3 tri-layer, their window size and hyperparameters were first tuned, and on seven years of daily data they were trained, then validated and tested on two separate years to ensure the generalization on unseen data. The performance of the three models was compared using hydrogram-plots, Scatter-plots, Taylor diagrams, and several statistical metrics. The results indicate that the single-layer LSTM 1 outperforms the other models, it consistently achieves higher overall performance on the training, validation, and testing periods with a coefficient of determination R-squared of 0.92, 0.97, and 0.95 respectively; and with Nash-Sutcliffe efficiency metric of 0.91, 0.94 and 0.94 respectively, challenging the conventional beliefs about the direct link between complexity and effectiveness. Furthermore, all the models are capable of capturing the extreme discharges, although, with a moderate underprediction trend for LSTM 1 and 2 as it does not exceed -25% during the test period. For LSTM 3, even if its underestimation is less pronounced, its increased error rate reduces the confidence in its performance. This study highlights the impor - tance of aligning model complexity with data specifications and suggests the necessity of considering unaccounted factors like upstream dam releases to enhance the efficiency in capturing the peaks of extreme events.","PeriodicalId":52648,"journal":{"name":"Ecological Engineering Environmental Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Approach for Runoff Prediction: Evaluating the Long-Short-Term Memory Neural Network Architectures for Capturing Extreme Discharge Events in the Ouergha Basin, Morocco\",\"authors\":\"Nourelhouda Karmouda, Tarik Bouramtane, Mounia TAHIRI, Ilias Kacimi, Marc Leblanc, Nadia Kassou\",\"doi\":\"10.12912/27197050/174146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall-runoff modeling plays a crucial role in achieving efficient water resource management and flood forecast - ing, particularly in the context of increasing intensity and frequency of extreme meteorological events induced by climate change. Therefore, the aim of this research is to assess the accuracy of the Long-Short-Term Memory (LSTM) neural networks and the impact of its architecture in predicting runoff, with a particular focus on capturing extreme hydrological discharges in the Ouergha basin; a Moroccan Mediterranean basin with historical implica - tions in many cases of flooding; using solely daily rainfall and runoff data for training. For this purpose, three LSTM models of different depths were constructed, namely LSTM 1 single-layer, LSTM 2 bi-layer, and LSTM 3 tri-layer, their window size and hyperparameters were first tuned, and on seven years of daily data they were trained, then validated and tested on two separate years to ensure the generalization on unseen data. The performance of the three models was compared using hydrogram-plots, Scatter-plots, Taylor diagrams, and several statistical metrics. The results indicate that the single-layer LSTM 1 outperforms the other models, it consistently achieves higher overall performance on the training, validation, and testing periods with a coefficient of determination R-squared of 0.92, 0.97, and 0.95 respectively; and with Nash-Sutcliffe efficiency metric of 0.91, 0.94 and 0.94 respectively, challenging the conventional beliefs about the direct link between complexity and effectiveness. Furthermore, all the models are capable of capturing the extreme discharges, although, with a moderate underprediction trend for LSTM 1 and 2 as it does not exceed -25% during the test period. For LSTM 3, even if its underestimation is less pronounced, its increased error rate reduces the confidence in its performance. This study highlights the impor - tance of aligning model complexity with data specifications and suggests the necessity of considering unaccounted factors like upstream dam releases to enhance the efficiency in capturing the peaks of extreme events.\",\"PeriodicalId\":52648,\"journal\":{\"name\":\"Ecological Engineering Environmental Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering Environmental Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12912/27197050/174146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/174146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Approach for Runoff Prediction: Evaluating the Long-Short-Term Memory Neural Network Architectures for Capturing Extreme Discharge Events in the Ouergha Basin, Morocco
Rainfall-runoff modeling plays a crucial role in achieving efficient water resource management and flood forecast - ing, particularly in the context of increasing intensity and frequency of extreme meteorological events induced by climate change. Therefore, the aim of this research is to assess the accuracy of the Long-Short-Term Memory (LSTM) neural networks and the impact of its architecture in predicting runoff, with a particular focus on capturing extreme hydrological discharges in the Ouergha basin; a Moroccan Mediterranean basin with historical implica - tions in many cases of flooding; using solely daily rainfall and runoff data for training. For this purpose, three LSTM models of different depths were constructed, namely LSTM 1 single-layer, LSTM 2 bi-layer, and LSTM 3 tri-layer, their window size and hyperparameters were first tuned, and on seven years of daily data they were trained, then validated and tested on two separate years to ensure the generalization on unseen data. The performance of the three models was compared using hydrogram-plots, Scatter-plots, Taylor diagrams, and several statistical metrics. The results indicate that the single-layer LSTM 1 outperforms the other models, it consistently achieves higher overall performance on the training, validation, and testing periods with a coefficient of determination R-squared of 0.92, 0.97, and 0.95 respectively; and with Nash-Sutcliffe efficiency metric of 0.91, 0.94 and 0.94 respectively, challenging the conventional beliefs about the direct link between complexity and effectiveness. Furthermore, all the models are capable of capturing the extreme discharges, although, with a moderate underprediction trend for LSTM 1 and 2 as it does not exceed -25% during the test period. For LSTM 3, even if its underestimation is less pronounced, its increased error rate reduces the confidence in its performance. This study highlights the impor - tance of aligning model complexity with data specifications and suggests the necessity of considering unaccounted factors like upstream dam releases to enhance the efficiency in capturing the peaks of extreme events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Engineering  Environmental Technology
Ecological Engineering Environmental Technology Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.30
自引率
0.00%
发文量
159
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信