非洛伦兹时空和亚里斯多德流体力学的哥德亿-维不变量

Vincenzo Emilio Marotta, Richard J Szabo
{"title":"非洛伦兹时空和亚里斯多德流体力学的哥德亿-维不变量","authors":"Vincenzo Emilio Marotta, Richard J Szabo","doi":"10.1088/1751-8121/acfc07","DOIUrl":null,"url":null,"abstract":"Abstract We study the geometry of foliated non-Lorentzian spacetimes in terms of the Godbillon-Vey class of the foliation. We relate the intrinsic torsion of a foliated Aristotelian manifold to its Godbillon-Vey class, and interpret it as a measure of the local spin of the spatial leaves in the time direction. With this characterisation, the Godbillon-Vey class is an obstruction to integrability of the <?CDATA ${\\mathsf{G}}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"sans-serif\">G</mml:mi> </mml:mrow> </mml:mrow> </mml:math> -structure defining the Aristotelian spacetime. We use these notions to formulate a new geometric approach to hydrodynamics of fluid flows by endowing them with Aristotelian structures. We establish conditions under which the Godbillon-Vey class represents an obstruction to steady flow of the fluid and prove new conservation laws.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"370 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Godbillon-Vey invariants of non-Lorentzian spacetimes and Aristotelian hydrodynamics\",\"authors\":\"Vincenzo Emilio Marotta, Richard J Szabo\",\"doi\":\"10.1088/1751-8121/acfc07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the geometry of foliated non-Lorentzian spacetimes in terms of the Godbillon-Vey class of the foliation. We relate the intrinsic torsion of a foliated Aristotelian manifold to its Godbillon-Vey class, and interpret it as a measure of the local spin of the spatial leaves in the time direction. With this characterisation, the Godbillon-Vey class is an obstruction to integrability of the <?CDATA ${\\\\mathsf{G}}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"sans-serif\\\">G</mml:mi> </mml:mrow> </mml:mrow> </mml:math> -structure defining the Aristotelian spacetime. We use these notions to formulate a new geometric approach to hydrodynamics of fluid flows by endowing them with Aristotelian structures. We establish conditions under which the Godbillon-Vey class represents an obstruction to steady flow of the fluid and prove new conservation laws.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"370 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfc07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfc07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要从叶理的哥德亿-维类出发,研究了非洛伦兹叶理时空的几何。我们将叶状亚里斯多德流形的本征扭转与其哥德亿-维类联系起来,并将其解释为空间叶片在时间方向上的局部自旋的度量。有了这个特征,哥德亿-维类对定义亚里士多德时空的G结构的可积性是一个障碍。我们利用这些概念,通过赋予它们亚里士多德的结构,来形成一种新的流体力学几何方法。我们建立了哥德亿-维类代表流体稳定流动障碍的条件,并证明了新的守恒定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Godbillon-Vey invariants of non-Lorentzian spacetimes and Aristotelian hydrodynamics
Abstract We study the geometry of foliated non-Lorentzian spacetimes in terms of the Godbillon-Vey class of the foliation. We relate the intrinsic torsion of a foliated Aristotelian manifold to its Godbillon-Vey class, and interpret it as a measure of the local spin of the spatial leaves in the time direction. With this characterisation, the Godbillon-Vey class is an obstruction to integrability of the G -structure defining the Aristotelian spacetime. We use these notions to formulate a new geometric approach to hydrodynamics of fluid flows by endowing them with Aristotelian structures. We establish conditions under which the Godbillon-Vey class represents an obstruction to steady flow of the fluid and prove new conservation laws.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信