正切配合物和Diamond引理

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vladimir Dotsenko, Pedro Tamaroff
{"title":"正切配合物和Diamond引理","authors":"Vladimir Dotsenko, Pedro Tamaroff","doi":"10.1142/s1664360723500133","DOIUrl":null,"url":null,"abstract":"The celebrated Diamond Lemma of Bergman gives an effectively verifiable criterion of uniqueness of normal forms for term rewriting in associative algebras. We present a new way to interpret and prove this result from the viewpoint of homotopical algebra. Our main result states that every multiplicative free resolution of an algebra with monomial relations gives rise to its own Diamond Lemma, so that Bergman's condition of resolvable ambiguities becomes the first non-trivial component of the Maurer--Cartan equation in the corresponding tangent complex. The same approach works for many other algebraic structures, emphasizing the relevance of computing multiplicative free resolutions of algebras with monomial relations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tangent complexes and the Diamond Lemma\",\"authors\":\"Vladimir Dotsenko, Pedro Tamaroff\",\"doi\":\"10.1142/s1664360723500133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The celebrated Diamond Lemma of Bergman gives an effectively verifiable criterion of uniqueness of normal forms for term rewriting in associative algebras. We present a new way to interpret and prove this result from the viewpoint of homotopical algebra. Our main result states that every multiplicative free resolution of an algebra with monomial relations gives rise to its own Diamond Lemma, so that Bergman's condition of resolvable ambiguities becomes the first non-trivial component of the Maurer--Cartan equation in the corresponding tangent complex. The same approach works for many other algebraic structures, emphasizing the relevance of computing multiplicative free resolutions of algebras with monomial relations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1664360723500133\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1664360723500133","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

著名的伯格曼菱形引理给出了一个可有效验证的结合代数项改写范式唯一性判据。我们从同邻代数的观点出发,提出了一种新的解释和证明这一结果的方法。我们的主要结果表明,具有单项式关系的代数的每一个乘法自由分辨率都会产生它自己的Diamond引理,因此Bergman的可解歧义条件成为相应切复中Maurer- Cartan方程的第一个非平凡分量。同样的方法适用于许多其他代数结构,强调计算具有单项式关系的代数的乘法自由解析的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tangent complexes and the Diamond Lemma
The celebrated Diamond Lemma of Bergman gives an effectively verifiable criterion of uniqueness of normal forms for term rewriting in associative algebras. We present a new way to interpret and prove this result from the viewpoint of homotopical algebra. Our main result states that every multiplicative free resolution of an algebra with monomial relations gives rise to its own Diamond Lemma, so that Bergman's condition of resolvable ambiguities becomes the first non-trivial component of the Maurer--Cartan equation in the corresponding tangent complex. The same approach works for many other algebraic structures, emphasizing the relevance of computing multiplicative free resolutions of algebras with monomial relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信