Richard A. Sniezko, Jeremy S. Johnson, Angelia Kegley, Robert Danchok
{"title":"白皮松的抗病性及濒危物种恢复的潜力","authors":"Richard A. Sniezko, Jeremy S. Johnson, Angelia Kegley, Robert Danchok","doi":"10.1002/ppp3.10443","DOIUrl":null,"url":null,"abstract":"Societal impact statement Forests world‐wide are being negatively affected by non‐native, invasive pathogens and pests, and some tree species face uncertain futures. To retain these species as components of future forests, the rare genetic resistance that exists needs to be identified and harnessed. The applied tree improvement program for whitebark pine ( Pinus albicaulis ), a threatened (in the United States) and endangered (in Canada) keystone species in many forests in western North America, provides an example of what can be accomplished in a relatively short timeframe. The level and frequency of resistance vary by location, and this information will be used to implement the national restoration plan. Summary Forest trees face serious threats from non‐native diseases and pests, often causing high mortality of both the existing trees and regeneration. Developing populations with genetic resistance can help restore forests and retain affected species. Resistance programs have historically focused on species of high economic importance; however, the threats to species of little direct economic value that provide other important ecosystem services are also great. We examined the frequency, level, and geographic variation in genetic resistance to white pine blister rust in the threatened Pinus albicaulis (whitebark pine), a keystone species in high‐elevation ecosystems in western North America. In the two trials reported here, 2‐year‐old seedling progeny of 225 whitebark pine parent trees were inoculated with two geographic sources of the fungal pathogen Cronartium ribicola and evaluated over 5 years for an array of resistance traits. The trials focused primarily on parent trees from the Oregon and Washington populations. We found unexpectedly high levels of quantitative resistance in some seedling families and populations, in stark contrast to levels observed in similar resistance programs with other North American white pine species such as Pinus monticola and Pinus lambertiana . The level of resistance found in some whitebark pine populations provides optimism about potential recovery efforts for this species. Restoration efforts are underway by government agencies, tribes, and non‐government organizations in both the United States and Canada. These efforts may help boost support for applied genetic resistance programs in other forest tree species severely affected by non‐native pathogens or pests.","PeriodicalId":52849,"journal":{"name":"Plants People Planet","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disease resistance in whitebark pine and potential for restoration of a threatened species\",\"authors\":\"Richard A. Sniezko, Jeremy S. Johnson, Angelia Kegley, Robert Danchok\",\"doi\":\"10.1002/ppp3.10443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Societal impact statement Forests world‐wide are being negatively affected by non‐native, invasive pathogens and pests, and some tree species face uncertain futures. To retain these species as components of future forests, the rare genetic resistance that exists needs to be identified and harnessed. The applied tree improvement program for whitebark pine ( Pinus albicaulis ), a threatened (in the United States) and endangered (in Canada) keystone species in many forests in western North America, provides an example of what can be accomplished in a relatively short timeframe. The level and frequency of resistance vary by location, and this information will be used to implement the national restoration plan. Summary Forest trees face serious threats from non‐native diseases and pests, often causing high mortality of both the existing trees and regeneration. Developing populations with genetic resistance can help restore forests and retain affected species. Resistance programs have historically focused on species of high economic importance; however, the threats to species of little direct economic value that provide other important ecosystem services are also great. We examined the frequency, level, and geographic variation in genetic resistance to white pine blister rust in the threatened Pinus albicaulis (whitebark pine), a keystone species in high‐elevation ecosystems in western North America. In the two trials reported here, 2‐year‐old seedling progeny of 225 whitebark pine parent trees were inoculated with two geographic sources of the fungal pathogen Cronartium ribicola and evaluated over 5 years for an array of resistance traits. The trials focused primarily on parent trees from the Oregon and Washington populations. We found unexpectedly high levels of quantitative resistance in some seedling families and populations, in stark contrast to levels observed in similar resistance programs with other North American white pine species such as Pinus monticola and Pinus lambertiana . The level of resistance found in some whitebark pine populations provides optimism about potential recovery efforts for this species. Restoration efforts are underway by government agencies, tribes, and non‐government organizations in both the United States and Canada. These efforts may help boost support for applied genetic resistance programs in other forest tree species severely affected by non‐native pathogens or pests.\",\"PeriodicalId\":52849,\"journal\":{\"name\":\"Plants People Planet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants People Planet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ppp3.10443\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants People Planet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ppp3.10443","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Disease resistance in whitebark pine and potential for restoration of a threatened species
Societal impact statement Forests world‐wide are being negatively affected by non‐native, invasive pathogens and pests, and some tree species face uncertain futures. To retain these species as components of future forests, the rare genetic resistance that exists needs to be identified and harnessed. The applied tree improvement program for whitebark pine ( Pinus albicaulis ), a threatened (in the United States) and endangered (in Canada) keystone species in many forests in western North America, provides an example of what can be accomplished in a relatively short timeframe. The level and frequency of resistance vary by location, and this information will be used to implement the national restoration plan. Summary Forest trees face serious threats from non‐native diseases and pests, often causing high mortality of both the existing trees and regeneration. Developing populations with genetic resistance can help restore forests and retain affected species. Resistance programs have historically focused on species of high economic importance; however, the threats to species of little direct economic value that provide other important ecosystem services are also great. We examined the frequency, level, and geographic variation in genetic resistance to white pine blister rust in the threatened Pinus albicaulis (whitebark pine), a keystone species in high‐elevation ecosystems in western North America. In the two trials reported here, 2‐year‐old seedling progeny of 225 whitebark pine parent trees were inoculated with two geographic sources of the fungal pathogen Cronartium ribicola and evaluated over 5 years for an array of resistance traits. The trials focused primarily on parent trees from the Oregon and Washington populations. We found unexpectedly high levels of quantitative resistance in some seedling families and populations, in stark contrast to levels observed in similar resistance programs with other North American white pine species such as Pinus monticola and Pinus lambertiana . The level of resistance found in some whitebark pine populations provides optimism about potential recovery efforts for this species. Restoration efforts are underway by government agencies, tribes, and non‐government organizations in both the United States and Canada. These efforts may help boost support for applied genetic resistance programs in other forest tree species severely affected by non‐native pathogens or pests.
期刊介绍:
Plants, People, Planet aims to publish outstanding research across the plant sciences, placing it firmly within the context of its wider relevance to people, society and the planet. We encourage scientists to consider carefully the potential impact of their research on people’s daily lives, on society, and on the world in which we live. We welcome submissions from all areas of plant sciences, from ecosystem studies to molecular genetics, and particularly encourage interdisciplinary studies, for instance within the social and medical sciences and chemistry and engineering.