UP(BCC)代数的对称双导

Q1 Arts and Humanities
Damla Yılmaz
{"title":"UP(BCC)代数的对称双导","authors":"Damla Yılmaz","doi":"10.1080/11663081.2023.2269433","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, we define the notions of (l,r)-symmetric bi-derivations and (r,l)-symmetric bi-derivations on UP-algebras and investigate some properties of them. For these derivations, we introduce the sets Kerd(U), Fixd(U) and FixD(U). Moreover, we examine with examples whether these sets are UP-subalgebra or UP-ideal.Keywords: UP-algebrasymmetric bi-derivationUP-idealfixed setBCC-algebras Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric bi-derivations of UP(BCC)-algebras\",\"authors\":\"Damla Yılmaz\",\"doi\":\"10.1080/11663081.2023.2269433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn this paper, we define the notions of (l,r)-symmetric bi-derivations and (r,l)-symmetric bi-derivations on UP-algebras and investigate some properties of them. For these derivations, we introduce the sets Kerd(U), Fixd(U) and FixD(U). Moreover, we examine with examples whether these sets are UP-subalgebra or UP-ideal.Keywords: UP-algebrasymmetric bi-derivationUP-idealfixed setBCC-algebras Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":38573,\"journal\":{\"name\":\"Journal of Applied Non-Classical Logics\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Non-Classical Logics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/11663081.2023.2269433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2023.2269433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

摘要定义了up代数上的(l,r)-对称双导和(r,l)-对称双导的概念,并研究了它们的一些性质。对于这些推导,我们引入集合Kerd(U), Fixd(U)和Fixd(U)。此外,我们用实例检验了这些集合是上-子代数还是上-理想。关键词:up -代数非对称双导up -理想固定集bcc -代数披露声明作者未报告潜在利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric bi-derivations of UP(BCC)-algebras
AbstractIn this paper, we define the notions of (l,r)-symmetric bi-derivations and (r,l)-symmetric bi-derivations on UP-algebras and investigate some properties of them. For these derivations, we introduce the sets Kerd(U), Fixd(U) and FixD(U). Moreover, we examine with examples whether these sets are UP-subalgebra or UP-ideal.Keywords: UP-algebrasymmetric bi-derivationUP-idealfixed setBCC-algebras Disclosure statementNo potential conflict of interest was reported by the author(s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Non-Classical Logics
Journal of Applied Non-Classical Logics Arts and Humanities-Philosophy
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信