在$E^{3}$中的直纹曲面的类平行曲面上的曲线上

IF 0.7 Q2 MATHEMATICS
Semra YURTTANÇIKMAZ
{"title":"在$E^{3}$中的直纹曲面的类平行曲面上的曲线上","authors":"Semra YURTTANÇIKMAZ","doi":"10.31801/cfsuasmas.1187854","DOIUrl":null,"url":null,"abstract":"In this paper, it has been researched curves lying on parallel-like surfaces $M^{f}$ of the ruled surface $M$ in $E^{3}$. Using the definition of parallel-like surfaces it has been found parametric expressions of parallel-like surface of the ruled surface and image curve of the directrix curve of the base surface. Moreover, obtaining Darboux frames of curves lying on surfaces $M$ and $M^{f}$, it has been compared the geodesic curvatures, the normal curvatures and the geodesic torsions of these curves.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the curves lying on parallel-like surfaces of the ruled surface in $E^{3}$\",\"authors\":\"Semra YURTTANÇIKMAZ\",\"doi\":\"10.31801/cfsuasmas.1187854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, it has been researched curves lying on parallel-like surfaces $M^{f}$ of the ruled surface $M$ in $E^{3}$. Using the definition of parallel-like surfaces it has been found parametric expressions of parallel-like surface of the ruled surface and image curve of the directrix curve of the base surface. Moreover, obtaining Darboux frames of curves lying on surfaces $M$ and $M^{f}$, it has been compared the geodesic curvatures, the normal curvatures and the geodesic torsions of these curves.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1187854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1187854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了E^{3}$中直纹曲面$M$的类平行曲面$M^{f}$上的曲线。利用类平行曲面的定义,得到了直纹曲面的类平行曲面和基面准线曲线的像曲线的参数表达式。在此基础上,分别得到了曲面$M$和曲面$M^{f}$上曲线的达布坐标系,并比较了它们的测地线曲率、法线曲率和测地线扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the curves lying on parallel-like surfaces of the ruled surface in $E^{3}$
In this paper, it has been researched curves lying on parallel-like surfaces $M^{f}$ of the ruled surface $M$ in $E^{3}$. Using the definition of parallel-like surfaces it has been found parametric expressions of parallel-like surface of the ruled surface and image curve of the directrix curve of the base surface. Moreover, obtaining Darboux frames of curves lying on surfaces $M$ and $M^{f}$, it has been compared the geodesic curvatures, the normal curvatures and the geodesic torsions of these curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信