基于计算的西苏门答腊地区(印度尼西亚赤道地区)气候异常(ENSO和IOD)对环境的影响分析

Melly Ariska, Adam Darmawan, Supari Supari, Muhammad Irfan, Iskhaq Iskandar
{"title":"基于计算的西苏门答腊地区(印度尼西亚赤道地区)气候异常(ENSO和IOD)对环境的影响分析","authors":"Melly Ariska, Adam Darmawan, Supari Supari, Muhammad Irfan, Iskhaq Iskandar","doi":"10.24815/jacps.v12i2.31167","DOIUrl":null,"url":null,"abstract":"Abstrak. ENSO (El Niño - Southern Oscillation) adalah bentuk anomali iklim di Samudra Pasifik yang ditandai dengan peningkatan suhu permukaan laut (SPL) di bagian Tengah dan Timur khatulistiwa. Fenomena ini memainkan peran penting dalam variasi iklim tahunan dan musiman di Indonesia, terutama di wilayah khatulistiwa Indonesia. Studi ini bertujuan untuk menganalisis dampak anomali iklim komputasi di wilayah khatulistiwa Indonesia. Metode yang digunakan dalam studi ini adalah metode regresi linier dengan membandingkan dua mesin statistik, yaitu bahasa pemrograman Python dan SPSS. Pengaruh ENSO dirasakan di beberapa daerah Indonesia yang ditandai dengan jumlah curah hujan yang lebih rendah selama tahun ENSO dibandingkan dengan sebelum dan sesudah ENSO. Peristiwa El Niño juga mempengaruhi masuknya musim kemarau dan durasinya sepanjang evolusi UNSO. Penurunan jumlah curah hujan berkorelasi negatif dengan peningkatan jumlah kebakaran hutan per tahun. Analisis curah hujan berbasis pembelajaran mesin menggunakan Google Colab dan Python memberikan hasil yang identik dengan analisis berbasis SPSS, sehingga hasil analisis berbasis pembelajaran mesin memiliki nilai yang akurat. Perubahan iklim akan menghasilkan perubahan pola iklim tahunan dan antartahunan seperti penundaan dalam awal musim hujan atau musim kemarau. Selain ENSO, juga terdapat gejala anomali iklim yang dihasilkan oleh interaksi antara laut dan atmosfer di Samudra Hindia di sekitar khatulistiwa, yang disebut IOD (Indian Ocean Dipole). Selain melihat dampak anomali iklim terhadap lingkungan, studi ini juga menguji perbandingan hubungan antara anomali perubahan iklim dan curah hujan menggunakan metode SPSS dan bahasa pemrograman Python dengan membandingkan akurasi output yang dihasilkan secara komputasi. Pengaruh IOD dan ENSO terhadap wilayah tipe hujan ekatorial tidak cukup signifikan. Hubungan antara IOD dan ENSO tidak cukup kuat untuk wilayah khatulistiwa dan tidak terjadi pergeseran pada puncak onset di wilayah ini. Abstract. ENSO (El Niño -Southern Oscillation) is a form of climate deviation in the Pacific Ocean which is characterized by an increase in sea surface temperature (SST) in the Central and Eastern parts of the equator. This phenomenon plays an important role in annual and seasonal climate variations in Indonesia, especially in the equatorial region of Indonesia. This study aimed to analyze the impact of a computational climate anomaly in the equatorial region of Indonesia. The method used in this study was the linear regression method by comparing two statistical engines, namely the Python coding language and SPSS. The influence of ENSO is felt in several areas of Indonesia which are characterized by lower amounts of rainfall during the ENSO year compared to pre- and post-ENSO. El-Niño events also affect the entry of the dry season and its duration throughout the evolution of UNSO. Reducing the amount of annual rainfall is negatively correlated with increasing the number of forest fires per year. Machine learning-based rainfall analysis using google collab and python gives identical results to SPSS-based analysis, so the results of machine learning-based analysis have an accurate value. Climate change will result in changes in annual and interannual climate patterns such as a delay in the start of the rainy season or dry season. In addition, the rainy season period is also expected to be shorter. Apart from ENSO, there are also symptoms of climate deviations produced by the interaction of the sea and the atmosphere in the Indian Ocean around the equator, which is called the IOD (Indian Ocean Dipole). In addition to looking at the impact of climate anomaly on the environment, this study also examines the comparison of the relationship between climate change anomaly and rainfall using the SPSS method and the Python coding language by comparing the accuracy of the computationally generated output. The influence of IOD and ENSO on the rain-type region with the Equatorial rain-type region is not significant enough. The relationship between IOD and ENSO is not strong enough for the equatorial region and there is no shift in the peak onset in this region.","PeriodicalId":31989,"journal":{"name":"Journal of Aceh Physics Society","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the impact climate anomalies (ENSO and IOD) on environments based of computing in the Western Sumatra Region (Equatorial Region of Indonesia)\",\"authors\":\"Melly Ariska, Adam Darmawan, Supari Supari, Muhammad Irfan, Iskhaq Iskandar\",\"doi\":\"10.24815/jacps.v12i2.31167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstrak. ENSO (El Niño - Southern Oscillation) adalah bentuk anomali iklim di Samudra Pasifik yang ditandai dengan peningkatan suhu permukaan laut (SPL) di bagian Tengah dan Timur khatulistiwa. Fenomena ini memainkan peran penting dalam variasi iklim tahunan dan musiman di Indonesia, terutama di wilayah khatulistiwa Indonesia. Studi ini bertujuan untuk menganalisis dampak anomali iklim komputasi di wilayah khatulistiwa Indonesia. Metode yang digunakan dalam studi ini adalah metode regresi linier dengan membandingkan dua mesin statistik, yaitu bahasa pemrograman Python dan SPSS. Pengaruh ENSO dirasakan di beberapa daerah Indonesia yang ditandai dengan jumlah curah hujan yang lebih rendah selama tahun ENSO dibandingkan dengan sebelum dan sesudah ENSO. Peristiwa El Niño juga mempengaruhi masuknya musim kemarau dan durasinya sepanjang evolusi UNSO. Penurunan jumlah curah hujan berkorelasi negatif dengan peningkatan jumlah kebakaran hutan per tahun. Analisis curah hujan berbasis pembelajaran mesin menggunakan Google Colab dan Python memberikan hasil yang identik dengan analisis berbasis SPSS, sehingga hasil analisis berbasis pembelajaran mesin memiliki nilai yang akurat. Perubahan iklim akan menghasilkan perubahan pola iklim tahunan dan antartahunan seperti penundaan dalam awal musim hujan atau musim kemarau. Selain ENSO, juga terdapat gejala anomali iklim yang dihasilkan oleh interaksi antara laut dan atmosfer di Samudra Hindia di sekitar khatulistiwa, yang disebut IOD (Indian Ocean Dipole). Selain melihat dampak anomali iklim terhadap lingkungan, studi ini juga menguji perbandingan hubungan antara anomali perubahan iklim dan curah hujan menggunakan metode SPSS dan bahasa pemrograman Python dengan membandingkan akurasi output yang dihasilkan secara komputasi. Pengaruh IOD dan ENSO terhadap wilayah tipe hujan ekatorial tidak cukup signifikan. Hubungan antara IOD dan ENSO tidak cukup kuat untuk wilayah khatulistiwa dan tidak terjadi pergeseran pada puncak onset di wilayah ini. Abstract. ENSO (El Niño -Southern Oscillation) is a form of climate deviation in the Pacific Ocean which is characterized by an increase in sea surface temperature (SST) in the Central and Eastern parts of the equator. This phenomenon plays an important role in annual and seasonal climate variations in Indonesia, especially in the equatorial region of Indonesia. This study aimed to analyze the impact of a computational climate anomaly in the equatorial region of Indonesia. The method used in this study was the linear regression method by comparing two statistical engines, namely the Python coding language and SPSS. The influence of ENSO is felt in several areas of Indonesia which are characterized by lower amounts of rainfall during the ENSO year compared to pre- and post-ENSO. El-Niño events also affect the entry of the dry season and its duration throughout the evolution of UNSO. Reducing the amount of annual rainfall is negatively correlated with increasing the number of forest fires per year. Machine learning-based rainfall analysis using google collab and python gives identical results to SPSS-based analysis, so the results of machine learning-based analysis have an accurate value. Climate change will result in changes in annual and interannual climate patterns such as a delay in the start of the rainy season or dry season. In addition, the rainy season period is also expected to be shorter. Apart from ENSO, there are also symptoms of climate deviations produced by the interaction of the sea and the atmosphere in the Indian Ocean around the equator, which is called the IOD (Indian Ocean Dipole). In addition to looking at the impact of climate anomaly on the environment, this study also examines the comparison of the relationship between climate change anomaly and rainfall using the SPSS method and the Python coding language by comparing the accuracy of the computationally generated output. The influence of IOD and ENSO on the rain-type region with the Equatorial rain-type region is not significant enough. The relationship between IOD and ENSO is not strong enough for the equatorial region and there is no shift in the peak onset in this region.\",\"PeriodicalId\":31989,\"journal\":{\"name\":\"Journal of Aceh Physics Society\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aceh Physics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24815/jacps.v12i2.31167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aceh Physics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24815/jacps.v12i2.31167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抽象。ENSO是太平洋气候异常的一种形式,其特征是赤道中部和东部海平面上升。这种现象在印尼的年和季气候变化中扮演着重要的角色,尤其是赤道印尼地区。本研究旨在分析印度尼西亚赤道地区计算气候异常的影响。本研究采用的方法是将两种统计引擎进行比较,即Python的编程语言和SPSS。恩索的影响是在印度尼西亚的一些地区感受到的,那里的降雨量比恩索之前和之后都低。厄尔尼诺现象也影响了UNSO进化过程中旱季的涌入和持续时间。降雨量的减少与每年森林火灾数量的增加有关。利用谷歌Colab和Python对机器学习基础分析给出与SPSS基础分析相同的结果,从而得出基于机器学习分析的准确值。气候变化将产生年度和年度气候模式的变化,如雨季或旱季的延迟。除了ENSO,还有气候异常的症状,这是由赤道附近印度洋的海洋和大气的相互作用产生的。除了观察气候异常对环境的影响外,该研究还通过比较计算产生的准确输出,测试了气候变化异常与降雨异常之间的关系。IOD和ENSO对降雨类型地区的影响还不够重要。IOD和ENSO之间的联系还不足以与赤道地区建立联系,也不会在该地区的onset峰值发生变化。抽象。这是太平洋气候变化的一种形式,由太平洋表面温度的增加所决定。这种现象在印尼的气候变化中扮演着一个重要的角色,特别是在赤道带地区。这一研究允许分析印尼赤道地区对气候影响的影响。在这项研究中使用的方法是由两个统计引擎进行比较的线性后悔方法,namely是Python编码语言和SPSS。恩索的影响存在于印度尼西亚某些地区,在2015年的前期和后期期间,rainfall的低海拔地区被rainfall的影响所影响。厄尔尼诺事件影响了干燥季节的进入和它的进化过程。每年都有增加森林火灾数字的风险。基于rainfall分析的工具rainfall analysis使用谷歌collab和python为sph based analysis提供识别基础分析的结果,因此基础学习分析的结果是准确的。气候变化会在气候之间发生变化,就像雨季或干旱季节开始时的延迟。另外,《雨季》也预计会缩短。在ENSO的部分,还有一段由位于赤道周围的印度海洋和大气干扰产生的气候变化交响曲。此外,这项研究还利用SPSS的方法和Python的语言来比较计算生成的准确输出,利用气候变化和rainfall之间的气候变化影响。赤道雷恩基层地区IOD和ENSO的影响无关紧要。IOD和ENSO之间的关系还不够牢固,对于赤道区域来说,这个区域的高峰位置没有变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the impact climate anomalies (ENSO and IOD) on environments based of computing in the Western Sumatra Region (Equatorial Region of Indonesia)
Abstrak. ENSO (El Niño - Southern Oscillation) adalah bentuk anomali iklim di Samudra Pasifik yang ditandai dengan peningkatan suhu permukaan laut (SPL) di bagian Tengah dan Timur khatulistiwa. Fenomena ini memainkan peran penting dalam variasi iklim tahunan dan musiman di Indonesia, terutama di wilayah khatulistiwa Indonesia. Studi ini bertujuan untuk menganalisis dampak anomali iklim komputasi di wilayah khatulistiwa Indonesia. Metode yang digunakan dalam studi ini adalah metode regresi linier dengan membandingkan dua mesin statistik, yaitu bahasa pemrograman Python dan SPSS. Pengaruh ENSO dirasakan di beberapa daerah Indonesia yang ditandai dengan jumlah curah hujan yang lebih rendah selama tahun ENSO dibandingkan dengan sebelum dan sesudah ENSO. Peristiwa El Niño juga mempengaruhi masuknya musim kemarau dan durasinya sepanjang evolusi UNSO. Penurunan jumlah curah hujan berkorelasi negatif dengan peningkatan jumlah kebakaran hutan per tahun. Analisis curah hujan berbasis pembelajaran mesin menggunakan Google Colab dan Python memberikan hasil yang identik dengan analisis berbasis SPSS, sehingga hasil analisis berbasis pembelajaran mesin memiliki nilai yang akurat. Perubahan iklim akan menghasilkan perubahan pola iklim tahunan dan antartahunan seperti penundaan dalam awal musim hujan atau musim kemarau. Selain ENSO, juga terdapat gejala anomali iklim yang dihasilkan oleh interaksi antara laut dan atmosfer di Samudra Hindia di sekitar khatulistiwa, yang disebut IOD (Indian Ocean Dipole). Selain melihat dampak anomali iklim terhadap lingkungan, studi ini juga menguji perbandingan hubungan antara anomali perubahan iklim dan curah hujan menggunakan metode SPSS dan bahasa pemrograman Python dengan membandingkan akurasi output yang dihasilkan secara komputasi. Pengaruh IOD dan ENSO terhadap wilayah tipe hujan ekatorial tidak cukup signifikan. Hubungan antara IOD dan ENSO tidak cukup kuat untuk wilayah khatulistiwa dan tidak terjadi pergeseran pada puncak onset di wilayah ini. Abstract. ENSO (El Niño -Southern Oscillation) is a form of climate deviation in the Pacific Ocean which is characterized by an increase in sea surface temperature (SST) in the Central and Eastern parts of the equator. This phenomenon plays an important role in annual and seasonal climate variations in Indonesia, especially in the equatorial region of Indonesia. This study aimed to analyze the impact of a computational climate anomaly in the equatorial region of Indonesia. The method used in this study was the linear regression method by comparing two statistical engines, namely the Python coding language and SPSS. The influence of ENSO is felt in several areas of Indonesia which are characterized by lower amounts of rainfall during the ENSO year compared to pre- and post-ENSO. El-Niño events also affect the entry of the dry season and its duration throughout the evolution of UNSO. Reducing the amount of annual rainfall is negatively correlated with increasing the number of forest fires per year. Machine learning-based rainfall analysis using google collab and python gives identical results to SPSS-based analysis, so the results of machine learning-based analysis have an accurate value. Climate change will result in changes in annual and interannual climate patterns such as a delay in the start of the rainy season or dry season. In addition, the rainy season period is also expected to be shorter. Apart from ENSO, there are also symptoms of climate deviations produced by the interaction of the sea and the atmosphere in the Indian Ocean around the equator, which is called the IOD (Indian Ocean Dipole). In addition to looking at the impact of climate anomaly on the environment, this study also examines the comparison of the relationship between climate change anomaly and rainfall using the SPSS method and the Python coding language by comparing the accuracy of the computationally generated output. The influence of IOD and ENSO on the rain-type region with the Equatorial rain-type region is not significant enough. The relationship between IOD and ENSO is not strong enough for the equatorial region and there is no shift in the peak onset in this region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信