基于WPT的航天器高绝热系统的设计与评价

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sayuri Honda, Shuhei Shimada, Kosuke Tanaka, Kana Nakamura, Takehiro Imura, Katsuhiro Hata, Yoichi Hori
{"title":"基于WPT的航天器高绝热系统的设计与评价","authors":"Sayuri Honda, Shuhei Shimada, Kosuke Tanaka, Kana Nakamura, Takehiro Imura, Katsuhiro Hata, Yoichi Hori","doi":"10.1541/ieejjia.22007943","DOIUrl":null,"url":null,"abstract":"As a new space station succeeding the International Space Station (ISS), a lunar orbit manned base, called “Gateway,” is considered and manned lunar surface exploration via the Gateway is also studied. To realize manned lunar surface exploration, new technologies are required to overcome the severe condition of the lunar night. As one of these technologies, applying wireless power transfer (WPT) to a spacecraft, such as a rover, is proposed. The WPT system contributes to the improvement of heat insulation performance and is ideal for reducing the weight of the battery of the spacecraft. In addition, magnetic transmissive multi-layer insulation (MT-MLI) is developed to suppress the generation of eddy currents. In WPT experiments with MT-MLI, the power transmission efficiency between coils is 90 % or more. Furthermore, thermal vacuum tests demonstrate that the combination of WPT and MT-MLI reduces thermal leakage.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal and Evaluation of High-Heat Insulation System for Spacecraft by Using WPT\",\"authors\":\"Sayuri Honda, Shuhei Shimada, Kosuke Tanaka, Kana Nakamura, Takehiro Imura, Katsuhiro Hata, Yoichi Hori\",\"doi\":\"10.1541/ieejjia.22007943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a new space station succeeding the International Space Station (ISS), a lunar orbit manned base, called “Gateway,” is considered and manned lunar surface exploration via the Gateway is also studied. To realize manned lunar surface exploration, new technologies are required to overcome the severe condition of the lunar night. As one of these technologies, applying wireless power transfer (WPT) to a spacecraft, such as a rover, is proposed. The WPT system contributes to the improvement of heat insulation performance and is ideal for reducing the weight of the battery of the spacecraft. In addition, magnetic transmissive multi-layer insulation (MT-MLI) is developed to suppress the generation of eddy currents. In WPT experiments with MT-MLI, the power transmission efficiency between coils is 90 % or more. Furthermore, thermal vacuum tests demonstrate that the combination of WPT and MT-MLI reduces thermal leakage.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1541/ieejjia.22007943\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22007943","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为接替国际空间站(ISS)的新空间站,正在考虑建立月球轨道载人基地“门户”,并研究通过“门户”进行载人月球表面探测。要实现载人月面探测,需要克服月夜恶劣条件的新技术。作为这些技术之一,提出了将无线电力传输(WPT)应用于探测器等航天器。WPT系统有助于提高隔热性能,是减轻航天器电池重量的理想选择。此外,为了抑制涡流的产生,还开发了磁性传输多层绝缘(MT-MLI)。在MT-MLI的WPT实验中,线圈之间的功率传输效率达到90%以上。此外,热真空试验表明,WPT和MT-MLI的组合减少了热泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal and Evaluation of High-Heat Insulation System for Spacecraft by Using WPT
As a new space station succeeding the International Space Station (ISS), a lunar orbit manned base, called “Gateway,” is considered and manned lunar surface exploration via the Gateway is also studied. To realize manned lunar surface exploration, new technologies are required to overcome the severe condition of the lunar night. As one of these technologies, applying wireless power transfer (WPT) to a spacecraft, such as a rover, is proposed. The WPT system contributes to the improvement of heat insulation performance and is ideal for reducing the weight of the battery of the spacecraft. In addition, magnetic transmissive multi-layer insulation (MT-MLI) is developed to suppress the generation of eddy currents. In WPT experiments with MT-MLI, the power transmission efficiency between coils is 90 % or more. Furthermore, thermal vacuum tests demonstrate that the combination of WPT and MT-MLI reduces thermal leakage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信