{"title":"双曲凸函数的积分表示","authors":"O. Lopotko","doi":"10.31861/bmj2023.01.02","DOIUrl":null,"url":null,"abstract":"An article consists of two parts. In the first part the sufficient and necessary conditions for an integral representation of hyperbolically convex (h.c.) functions $k(x)$ $\\left(x\\in \\mathbb{R}^{\\infty}= \\mathbb{R}^1\\times\\mathbb{R}^1\\times \\dots\\right)$ are proved. For this purpose in $\\mathbb{R}^{\\infty}$ we introduce measures $\\omega_1(x)$, $\\omega_{\\frac{1}{2}}(x)$. The positive definiteness of a function will be understood on the integral sense with respect to the measure $\\omega_1(x)$. Then we proved that the measure $\\rho(\\lambda)$ in the integral representation is concentrated on $l_2^+=\\bigg\\{\\lambda \\in \\mathbb{R}_+^{\\infty}= \\mathbb{R}_+^1\\times\\mathbb{R}_+^1\\times \\dots\\Big|\\sum\\limits_{n=1}^{\\infty}\\lambda_n^2<\\infty\\bigg\\}$. The equality for $k(x)$ $\\left(x\\in\\mathbb{R}^{\\infty} \\right)$ is regarded as an equality for almost all $x\\in\\mathbb{R}^{\\infty}$ with respect to measure $\\omega_{\\frac{1}{2}}(x)$. In the second part we proved the sufficient and necessary conditions for integral representation of h.c. functions $k(x)$ $\\big(x\\in \\mathbb{R}_0^{\\infty}$ $\\mathrm{~is~a~nuclear~space}\\big)$. The positive definiteness of a function $k(x)$ will be understood on the pointwise sense. For this purpose we shall construct a rigging (chain) $\\mathbb{R}_0^{\\infty}\\subset l_2 \\subset \\mathbb{R}^{\\infty}$. Then, given that the projection and inductive topologies are coinciding, we shall obtaine the integral representation for $k(x)$ $\\left(x\\in \\mathbb{R}_0^{\\infty}\\right)$","PeriodicalId":479563,"journal":{"name":"Bukovinsʹkij matematičnij žurnal","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INTEGRAL REPRESENTATION OF HYPERBOLICALLY CONVEX FUNCTIONS\",\"authors\":\"O. Lopotko\",\"doi\":\"10.31861/bmj2023.01.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An article consists of two parts. In the first part the sufficient and necessary conditions for an integral representation of hyperbolically convex (h.c.) functions $k(x)$ $\\\\left(x\\\\in \\\\mathbb{R}^{\\\\infty}= \\\\mathbb{R}^1\\\\times\\\\mathbb{R}^1\\\\times \\\\dots\\\\right)$ are proved. For this purpose in $\\\\mathbb{R}^{\\\\infty}$ we introduce measures $\\\\omega_1(x)$, $\\\\omega_{\\\\frac{1}{2}}(x)$. The positive definiteness of a function will be understood on the integral sense with respect to the measure $\\\\omega_1(x)$. Then we proved that the measure $\\\\rho(\\\\lambda)$ in the integral representation is concentrated on $l_2^+=\\\\bigg\\\\{\\\\lambda \\\\in \\\\mathbb{R}_+^{\\\\infty}= \\\\mathbb{R}_+^1\\\\times\\\\mathbb{R}_+^1\\\\times \\\\dots\\\\Big|\\\\sum\\\\limits_{n=1}^{\\\\infty}\\\\lambda_n^2<\\\\infty\\\\bigg\\\\}$. The equality for $k(x)$ $\\\\left(x\\\\in\\\\mathbb{R}^{\\\\infty} \\\\right)$ is regarded as an equality for almost all $x\\\\in\\\\mathbb{R}^{\\\\infty}$ with respect to measure $\\\\omega_{\\\\frac{1}{2}}(x)$. In the second part we proved the sufficient and necessary conditions for integral representation of h.c. functions $k(x)$ $\\\\big(x\\\\in \\\\mathbb{R}_0^{\\\\infty}$ $\\\\mathrm{~is~a~nuclear~space}\\\\big)$. The positive definiteness of a function $k(x)$ will be understood on the pointwise sense. For this purpose we shall construct a rigging (chain) $\\\\mathbb{R}_0^{\\\\infty}\\\\subset l_2 \\\\subset \\\\mathbb{R}^{\\\\infty}$. Then, given that the projection and inductive topologies are coinciding, we shall obtaine the integral representation for $k(x)$ $\\\\left(x\\\\in \\\\mathbb{R}_0^{\\\\infty}\\\\right)$\",\"PeriodicalId\":479563,\"journal\":{\"name\":\"Bukovinsʹkij matematičnij žurnal\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinsʹkij matematičnij žurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2023.01.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinsʹkij matematičnij žurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2023.01.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INTEGRAL REPRESENTATION OF HYPERBOLICALLY CONVEX FUNCTIONS
An article consists of two parts. In the first part the sufficient and necessary conditions for an integral representation of hyperbolically convex (h.c.) functions $k(x)$ $\left(x\in \mathbb{R}^{\infty}= \mathbb{R}^1\times\mathbb{R}^1\times \dots\right)$ are proved. For this purpose in $\mathbb{R}^{\infty}$ we introduce measures $\omega_1(x)$, $\omega_{\frac{1}{2}}(x)$. The positive definiteness of a function will be understood on the integral sense with respect to the measure $\omega_1(x)$. Then we proved that the measure $\rho(\lambda)$ in the integral representation is concentrated on $l_2^+=\bigg\{\lambda \in \mathbb{R}_+^{\infty}= \mathbb{R}_+^1\times\mathbb{R}_+^1\times \dots\Big|\sum\limits_{n=1}^{\infty}\lambda_n^2<\infty\bigg\}$. The equality for $k(x)$ $\left(x\in\mathbb{R}^{\infty} \right)$ is regarded as an equality for almost all $x\in\mathbb{R}^{\infty}$ with respect to measure $\omega_{\frac{1}{2}}(x)$. In the second part we proved the sufficient and necessary conditions for integral representation of h.c. functions $k(x)$ $\big(x\in \mathbb{R}_0^{\infty}$ $\mathrm{~is~a~nuclear~space}\big)$. The positive definiteness of a function $k(x)$ will be understood on the pointwise sense. For this purpose we shall construct a rigging (chain) $\mathbb{R}_0^{\infty}\subset l_2 \subset \mathbb{R}^{\infty}$. Then, given that the projection and inductive topologies are coinciding, we shall obtaine the integral representation for $k(x)$ $\left(x\in \mathbb{R}_0^{\infty}\right)$