高阶格式下求解一类时间分数阶偏微分方程

海花 谭
{"title":"高阶格式下求解一类时间分数阶偏微分方程","authors":"海花 谭","doi":"10.12677/aam.2023.1210404","DOIUrl":null,"url":null,"abstract":"This paper investigates the numerical solution of a class of partial differential equations of time-fractional order. Firstly, the paper discretizes the spatial variables using the higher order weighted essential no oscillation (WENO) scheme to achieve high accuracy in the spatial direction, thus obtaining an ordinary differential equation related only to time. Then, the exponential sum approximation (SOE) to the time-fractional order Caputo derivative is applied in the time direction to reduce memory and complexity for fast computation. Next, the higher-order convergence of the","PeriodicalId":62065,"journal":{"name":"数学进展","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving a Class of Time-Fractional Order Par-tial Differential Equations in High Order Scheme\",\"authors\":\"海花 谭\",\"doi\":\"10.12677/aam.2023.1210404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the numerical solution of a class of partial differential equations of time-fractional order. Firstly, the paper discretizes the spatial variables using the higher order weighted essential no oscillation (WENO) scheme to achieve high accuracy in the spatial direction, thus obtaining an ordinary differential equation related only to time. Then, the exponential sum approximation (SOE) to the time-fractional order Caputo derivative is applied in the time direction to reduce memory and complexity for fast computation. Next, the higher-order convergence of the\",\"PeriodicalId\":62065,\"journal\":{\"name\":\"数学进展\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学进展\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12677/aam.2023.1210404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12677/aam.2023.1210404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving a Class of Time-Fractional Order Par-tial Differential Equations in High Order Scheme
This paper investigates the numerical solution of a class of partial differential equations of time-fractional order. Firstly, the paper discretizes the spatial variables using the higher order weighted essential no oscillation (WENO) scheme to achieve high accuracy in the spatial direction, thus obtaining an ordinary differential equation related only to time. Then, the exponential sum approximation (SOE) to the time-fractional order Caputo derivative is applied in the time direction to reduce memory and complexity for fast computation. Next, the higher-order convergence of the
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
3784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信