{"title":"银-银-石墨电刷与镀金滑环在不同银含量下的滑动接触机理","authors":"Naoki Fukuda, Koichiro Sawa, Minoru Aoyagi, Takahiro Ueno","doi":"10.1541/ieejjia.23003850","DOIUrl":null,"url":null,"abstract":"Brushes enable the transfer of electrical current between stationary and moving conductors. Typical contacting components are a brush and commutator in direct-current machines and a brush and slip ring in alternating-current machines. In recent years, Ag–graphite brushes and noble-metal-coated slip rings have often been applied. However, there are many aspects concerning the sliding contact of these components that require clarification. This paper focuses on characteristics relating to the brush wear and contact voltage drop of Ag–graphite brushes when the Ag content is varied for a Au-plated slip ring. In this study, we conducted sliding tests, using Ag–graphite brushes (coated with Ag contents of 50, 60, 70, 80, and 90 wt%) and a Au-coated slip ring. The results showed the effects of the interposing layer on the brush wear and drop in contact voltage. In particular, there were three distinct compositional zones, namely a zone where the effect of graphite was dominant (Ag content of the brush of 50 wt%), a zone where both the graphite and Ag powder had influence (60–80 wt%), and a zone where the effect of Ag powder was dominant (90 wt%).","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"23 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of the Sliding Contact of a Ag Ag–Graphite Brush against a Au Au-plated Slip Ring for Varying Ag Content\",\"authors\":\"Naoki Fukuda, Koichiro Sawa, Minoru Aoyagi, Takahiro Ueno\",\"doi\":\"10.1541/ieejjia.23003850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brushes enable the transfer of electrical current between stationary and moving conductors. Typical contacting components are a brush and commutator in direct-current machines and a brush and slip ring in alternating-current machines. In recent years, Ag–graphite brushes and noble-metal-coated slip rings have often been applied. However, there are many aspects concerning the sliding contact of these components that require clarification. This paper focuses on characteristics relating to the brush wear and contact voltage drop of Ag–graphite brushes when the Ag content is varied for a Au-plated slip ring. In this study, we conducted sliding tests, using Ag–graphite brushes (coated with Ag contents of 50, 60, 70, 80, and 90 wt%) and a Au-coated slip ring. The results showed the effects of the interposing layer on the brush wear and drop in contact voltage. In particular, there were three distinct compositional zones, namely a zone where the effect of graphite was dominant (Ag content of the brush of 50 wt%), a zone where both the graphite and Ag powder had influence (60–80 wt%), and a zone where the effect of Ag powder was dominant (90 wt%).\",\"PeriodicalId\":45552,\"journal\":{\"name\":\"IEEJ Journal of Industry Applications\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEJ Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1541/ieejjia.23003850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.23003850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mechanism of the Sliding Contact of a Ag Ag–Graphite Brush against a Au Au-plated Slip Ring for Varying Ag Content
Brushes enable the transfer of electrical current between stationary and moving conductors. Typical contacting components are a brush and commutator in direct-current machines and a brush and slip ring in alternating-current machines. In recent years, Ag–graphite brushes and noble-metal-coated slip rings have often been applied. However, there are many aspects concerning the sliding contact of these components that require clarification. This paper focuses on characteristics relating to the brush wear and contact voltage drop of Ag–graphite brushes when the Ag content is varied for a Au-plated slip ring. In this study, we conducted sliding tests, using Ag–graphite brushes (coated with Ag contents of 50, 60, 70, 80, and 90 wt%) and a Au-coated slip ring. The results showed the effects of the interposing layer on the brush wear and drop in contact voltage. In particular, there were three distinct compositional zones, namely a zone where the effect of graphite was dominant (Ag content of the brush of 50 wt%), a zone where both the graphite and Ag powder had influence (60–80 wt%), and a zone where the effect of Ag powder was dominant (90 wt%).
期刊介绍:
IEEJ Journal of Industry Applications: Power Electronics - AC/AC Conversion and DC/DC Conversion, - Power Semiconductor Devices and their Application, - Inverters and Rectifiers, - Power Supply System and its Application, - Power Electronics Modeling, Simulation, Design and Control, - Renewable Electric Energy Conversion Industrial System - Mechatronics and Robotics, - Industrial Instrumentation and Control, - Sensing, Actuation, Motion Control and Haptics, - Factory Automation and Production Facility Control, - Automobile Technology and ITS Technology, - Information Oriented Industrial System Electrical Machinery and Apparatus - Electric Machines Design, Modeling and Control, - Rotating Motor Drives and Linear Motor Drives, - Electric Vehicles and Hybrid Electric Vehicles, - Electric Railway and Traction Control, - Magnetic Levitation and Magnetic Bearing, - Static Apparatus and Superconductive Application Publishing Ethics of IEEJ Journal of Industry Applications: Code of Ethics on IEEJ IEEJ Journal of Industry Applications is a peer-reviewed journal of IEEJ (the Institute of Electrical Engineers of Japan). The publication of IEEJ Journal of Industry Applications is an essential building article in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. IEEJ Journal of Industry Applications has "Peer-reviewed articles support." It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer and IEEJ (the Institute of Electrical Engineers of Japan).