采用水冷铜板和液氮的电弧焊的热效率测量和影响因素的考察

Shoji FUJIYAMA, Yuki ASAI, Hisaya KOMEN, Manabu TANAKA
{"title":"采用水冷铜板和液氮的电弧焊的热效率测量和影响因素的考察","authors":"Shoji FUJIYAMA, Yuki ASAI, Hisaya KOMEN, Manabu TANAKA","doi":"10.2207/qjjws.41.248","DOIUrl":null,"url":null,"abstract":"Arc efficiencies of gas tungsten arc welding (GTAW) were measured using two different methods, liquid nitrogen calorimetry and water-cooled copper anode calorimetry, across a range of welding currents from 98 A to 302 A. Arc efficiencies determined with water-cooled copper anode calorimetry remained constant throughout the entire current range, while those measured with liquid nitrogen calorimetry exhibited a concave curve. A hypothesis was proposed to explain the changes in arc efficiency with varying welding currents. Accordingly, a decrease in arc efficiency at 149 A welding current was caused by reduced Joule heating due to increased electrical conduction from iron-vapor contamination in an arc. For welding currents above 227 A, a decrease in arc efficiency was attributed to increased penetration depth, leading to more uniform heating in the base metal beneath the arc column, thereby preventing heat conduction within the metal. Thereafter, the relationship between penetration depth and arc efficiency was experimentally confirmed. Comparing with the arc efficiency of gas metal arc welding (GMAW), it was found that the mechanism in which arc efficiency changes with welding current in GTAW was different from that in GMAW.","PeriodicalId":20941,"journal":{"name":"Quarterly Journal of The Japan Welding Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"水冷銅板及び液体窒素を用いたアーク溶接の熱効率測定と 影響を与える要因の考察\",\"authors\":\"Shoji FUJIYAMA, Yuki ASAI, Hisaya KOMEN, Manabu TANAKA\",\"doi\":\"10.2207/qjjws.41.248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arc efficiencies of gas tungsten arc welding (GTAW) were measured using two different methods, liquid nitrogen calorimetry and water-cooled copper anode calorimetry, across a range of welding currents from 98 A to 302 A. Arc efficiencies determined with water-cooled copper anode calorimetry remained constant throughout the entire current range, while those measured with liquid nitrogen calorimetry exhibited a concave curve. A hypothesis was proposed to explain the changes in arc efficiency with varying welding currents. Accordingly, a decrease in arc efficiency at 149 A welding current was caused by reduced Joule heating due to increased electrical conduction from iron-vapor contamination in an arc. For welding currents above 227 A, a decrease in arc efficiency was attributed to increased penetration depth, leading to more uniform heating in the base metal beneath the arc column, thereby preventing heat conduction within the metal. Thereafter, the relationship between penetration depth and arc efficiency was experimentally confirmed. Comparing with the arc efficiency of gas metal arc welding (GMAW), it was found that the mechanism in which arc efficiency changes with welding current in GTAW was different from that in GMAW.\",\"PeriodicalId\":20941,\"journal\":{\"name\":\"Quarterly Journal of The Japan Welding Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of The Japan Welding Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2207/qjjws.41.248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of The Japan Welding Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/qjjws.41.248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用液氮量热法和水冷铜阳极量热法,在98 ~ 302 a的焊接电流范围内测量了钨气弧焊(GTAW)的电弧效率。用水冷铜阳极量热法测定的电弧效率在整个电流范围内保持恒定,而用液氮量热法测定的电弧效率呈凹曲线。提出了一个假设来解释电弧效率随焊接电流变化的变化。因此,在149a的焊接电流下,电弧效率的降低是由于电弧中铁蒸气污染导致的导电性增加而导致焦耳加热的减少。对于高于227 A的焊接电流,电弧效率的下降归因于穿透深度的增加,导致电弧柱下方的母材受热更均匀,从而阻止了金属内部的热传导。在此基础上,通过实验验证了穿透深度与电弧效率之间的关系。与气体保护金属电弧焊的电弧效率进行比较,发现气体保护金属电弧焊中电弧效率随焊接电流变化的机理与气体保护金属电弧焊中不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
水冷銅板及び液体窒素を用いたアーク溶接の熱効率測定と 影響を与える要因の考察
Arc efficiencies of gas tungsten arc welding (GTAW) were measured using two different methods, liquid nitrogen calorimetry and water-cooled copper anode calorimetry, across a range of welding currents from 98 A to 302 A. Arc efficiencies determined with water-cooled copper anode calorimetry remained constant throughout the entire current range, while those measured with liquid nitrogen calorimetry exhibited a concave curve. A hypothesis was proposed to explain the changes in arc efficiency with varying welding currents. Accordingly, a decrease in arc efficiency at 149 A welding current was caused by reduced Joule heating due to increased electrical conduction from iron-vapor contamination in an arc. For welding currents above 227 A, a decrease in arc efficiency was attributed to increased penetration depth, leading to more uniform heating in the base metal beneath the arc column, thereby preventing heat conduction within the metal. Thereafter, the relationship between penetration depth and arc efficiency was experimentally confirmed. Comparing with the arc efficiency of gas metal arc welding (GMAW), it was found that the mechanism in which arc efficiency changes with welding current in GTAW was different from that in GMAW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信