离散时间漂移风险的介绍

IF 0.4 Q4 MATHEMATICS, APPLIED
Takahiko Fujita, Naohiro Yoshida
{"title":"离散时间漂移风险的介绍","authors":"Takahiko Fujita, Naohiro Yoshida","doi":"10.14495/jsiaml.15.97","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt to provide an elementary introduction to the excursion risk theory by constructing a discrete-time analogue. The excursion risk theory is a theory of calculating risks in investments that use mean-reverting trading signals. We consider the case where the trading signal is a simple symmetric random walk (RW) and use the excursions of them to compute several quantities of risks in the investments. It may be said that this paper gives one way of applying the excursion theory of RWs that mathematicians have been studying for a long time to mathematical finance.","PeriodicalId":42099,"journal":{"name":"JSIAM Letters","volume":"21 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An introduction to excursion risk through discrete-time excursions\",\"authors\":\"Takahiko Fujita, Naohiro Yoshida\",\"doi\":\"10.14495/jsiaml.15.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we attempt to provide an elementary introduction to the excursion risk theory by constructing a discrete-time analogue. The excursion risk theory is a theory of calculating risks in investments that use mean-reverting trading signals. We consider the case where the trading signal is a simple symmetric random walk (RW) and use the excursions of them to compute several quantities of risks in the investments. It may be said that this paper gives one way of applying the excursion theory of RWs that mathematicians have been studying for a long time to mathematical finance.\",\"PeriodicalId\":42099,\"journal\":{\"name\":\"JSIAM Letters\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSIAM Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14495/jsiaml.15.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSIAM Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14495/jsiaml.15.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们试图通过构造一个离散时间模拟来初步介绍偏移风险理论。偏移风险理论是一种计算使用均值回归交易信号的投资风险的理论。我们考虑交易信号是一个简单对称随机漫步(RW)的情况,并使用它们的漂移来计算投资中的几个数量的风险。可以说,本文为数学家们研究已久的RWs漂移理论在数学金融中的应用提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An introduction to excursion risk through discrete-time excursions
In this paper, we attempt to provide an elementary introduction to the excursion risk theory by constructing a discrete-time analogue. The excursion risk theory is a theory of calculating risks in investments that use mean-reverting trading signals. We consider the case where the trading signal is a simple symmetric random walk (RW) and use the excursions of them to compute several quantities of risks in the investments. It may be said that this paper gives one way of applying the excursion theory of RWs that mathematicians have been studying for a long time to mathematical finance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JSIAM Letters
JSIAM Letters MATHEMATICS, APPLIED-
自引率
25.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信