{"title":"具有动态边界条件的抛物型系统的零可控性","authors":"Mariem Jakhoukh, Lahcen Maniar","doi":"10.3934/eect.2023051","DOIUrl":null,"url":null,"abstract":"In this paper, we study the null controllability of systems of $ n $-coupled parabolic equations with dynamic boundary conditions, where the coupling and control matrices $ A $ and $ B $ are constant in time and space. Being different to the case of static boundary conditions, we will show that the Kalman rank condition $ rank[B, AB,\\dots, A^{n-1}B ] = n $ is a sufficient condition, we also show that it is necessary for the null controlability under an extra assumption on the boundary coupling. The null controlability result will be proved by proving Carleman and observability inequalities for the corresponding adjoint problem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Null controllability for parabolic systems with dynamic boundary conditions\",\"authors\":\"Mariem Jakhoukh, Lahcen Maniar\",\"doi\":\"10.3934/eect.2023051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the null controllability of systems of $ n $-coupled parabolic equations with dynamic boundary conditions, where the coupling and control matrices $ A $ and $ B $ are constant in time and space. Being different to the case of static boundary conditions, we will show that the Kalman rank condition $ rank[B, AB,\\\\dots, A^{n-1}B ] = n $ is a sufficient condition, we also show that it is necessary for the null controlability under an extra assumption on the boundary coupling. The null controlability result will be proved by proving Carleman and observability inequalities for the corresponding adjoint problem.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2023051\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/eect.2023051","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了具有动态边界条件的n -耦合抛物方程系统的零可控性,其中耦合和控制矩阵A和B在时间和空间上都是恒定的。与静态边界条件的情况不同,我们将证明卡尔曼秩条件$ rank[B, AB,\dots, A^{n-1}B] = n $是一个充分条件,并且在边界耦合的额外假设下证明零可控性是必要的。通过对相应伴随问题的Carleman不等式和可观测不等式的证明,证明了零可控性结果。
Null controllability for parabolic systems with dynamic boundary conditions
In this paper, we study the null controllability of systems of $ n $-coupled parabolic equations with dynamic boundary conditions, where the coupling and control matrices $ A $ and $ B $ are constant in time and space. Being different to the case of static boundary conditions, we will show that the Kalman rank condition $ rank[B, AB,\dots, A^{n-1}B ] = n $ is a sufficient condition, we also show that it is necessary for the null controlability under an extra assumption on the boundary coupling. The null controlability result will be proved by proving Carleman and observability inequalities for the corresponding adjoint problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.