James M. Burke, Mike B. Daniels, Pearl Webb, Andrew N. Sharpley, Timothy Glover, Lawrence Berry, Karl W. Van Devender, Stan Rose
{"title":"阿肯色发现奶牛场粪便管理策略、磷地表径流潜力和水利用的评价","authors":"James M. Burke, Mike B. Daniels, Pearl Webb, Andrew N. Sharpley, Timothy Glover, Lawrence Berry, Karl W. Van Devender, Stan Rose","doi":"10.4236/jep.2023.149042","DOIUrl":null,"url":null,"abstract":"Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L-1) than the downhill freshwater pond respectively; 2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C; 3) manure dry stack nutrient content was typically higher than untreated dairy manure when measured on a “dry basis” in ppm, but was lower on an “as is basis” in ppm and kg/metric ton; and 4) water meter readings showed that the greatest use of on-farm water was for farm-wide cattle drinking (18.77), followed by water used in the milking center (3.45) and then followed by human usage (0.02) measured in cubic meters per day (m3⋅d-1). These results demonstrate that practical innovations in agricultural engineering and environmental science, such as the Haak dairy’s manure treatment system, can effectively reduce environmental hazards that accompany the management of manure at this dairy operation.","PeriodicalId":15775,"journal":{"name":"Journal of Environmental Protection","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evaluation of Manure Management Strategies, Phosphorus Surface Runoff Potential and Water Usage at an Arkansas Discovery Dairy Farm\",\"authors\":\"James M. Burke, Mike B. Daniels, Pearl Webb, Andrew N. Sharpley, Timothy Glover, Lawrence Berry, Karl W. Van Devender, Stan Rose\",\"doi\":\"10.4236/jep.2023.149042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L-1) than the downhill freshwater pond respectively; 2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C; 3) manure dry stack nutrient content was typically higher than untreated dairy manure when measured on a “dry basis” in ppm, but was lower on an “as is basis” in ppm and kg/metric ton; and 4) water meter readings showed that the greatest use of on-farm water was for farm-wide cattle drinking (18.77), followed by water used in the milking center (3.45) and then followed by human usage (0.02) measured in cubic meters per day (m3⋅d-1). These results demonstrate that practical innovations in agricultural engineering and environmental science, such as the Haak dairy’s manure treatment system, can effectively reduce environmental hazards that accompany the management of manure at this dairy operation.\",\"PeriodicalId\":15775,\"journal\":{\"name\":\"Journal of Environmental Protection\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jep.2023.149042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jep.2023.149042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Evaluation of Manure Management Strategies, Phosphorus Surface Runoff Potential and Water Usage at an Arkansas Discovery Dairy Farm
Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L-1) than the downhill freshwater pond respectively; 2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C; 3) manure dry stack nutrient content was typically higher than untreated dairy manure when measured on a “dry basis” in ppm, but was lower on an “as is basis” in ppm and kg/metric ton; and 4) water meter readings showed that the greatest use of on-farm water was for farm-wide cattle drinking (18.77), followed by water used in the milking center (3.45) and then followed by human usage (0.02) measured in cubic meters per day (m3⋅d-1). These results demonstrate that practical innovations in agricultural engineering and environmental science, such as the Haak dairy’s manure treatment system, can effectively reduce environmental hazards that accompany the management of manure at this dairy operation.