基于多源遥感的北方地区植被生产力模型研究机会

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ramon Melser, Nicholas C. Coops, Michael A. Wulder, Chris Derksen
{"title":"基于多源遥感的北方地区植被生产力模型研究机会","authors":"Ramon Melser, Nicholas C. Coops, Michael A. Wulder, Chris Derksen","doi":"10.1080/07038992.2023.2256895","DOIUrl":null,"url":null,"abstract":"Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities\",\"authors\":\"Ramon Melser, Nicholas C. Coops, Michael A. Wulder, Chris Derksen\",\"doi\":\"10.1080/07038992.2023.2256895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2023.2256895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07038992.2023.2256895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

了解在北方生态系统中驱动陆地植被生产力动态的过程对于准确评估碳动态至关重要。监测这些动态通常需要融合大尺度遥感观测、气候信息和其他地理空间数据输入,这些数据往往存在未知误差,难以获得,或限制生产力估算的时空分辨率。在过去的十年里,遥感技术和观测波长的多样性取得了显著的进步,为植被碳动态提供了新的见解。在本文中,我们回顾了目前陆地植被生产力建模的主要方法,然后讨论了新的遥感仪器和衍生产品,包括Sentinel-3陆地表面温度,土壤水分和海洋盐度(SMOS)任务的冻结和解冻状态,以及土壤水分主动式被动(SMAP)任务的土壤水分。我们概述了这些产品如何改善完全由遥感观测融合驱动的北方生产力估算的空间细节和时间表征。最后,我们展示了如何将这些不同的元素整合到哈德逊平原的主要土地覆盖类型中,哈德逊平原是加拿大北方地区广泛的湿地主导地区,并为未来的模型开发提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities
Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信