{"title":"基于mcda的撒丁岛生物甲烷生成和利用评估","authors":"Carla Asquer, Francesco Romagnoli","doi":"10.2478/rtuect-2023-0036","DOIUrl":null,"url":null,"abstract":"Abstract The selection of a local and sustainable use of biogas, and biogas feedstocks, towards the upgrading process to biomethane, is a key aspect towards more consistent energy planning within the frame of the EU Green Deal and Sustainable Development Goals. In this paper, four biomethane production and utilization pathways were assessed in the view of economic, environmental, technological, and social dimensions compared to a reference scenario in which direct biogas use in a cogeneration unit is assumed. The technologies analyzed included membrane systems, amine scrubbing, water scrubbing, and biological methanation, regarding the Sardinian context. The impact assessment was carried out using the TOPSIS method. As an output, thirteen consistent indicators reflecting the holistic aspect of sustainability were designed and proposed based on an in-depth literature review and the authors’ technological knowledge. The results show that the reference scenario was the preferable one. In terms of environmental and social considerations, biological methanation emerged as the most environmentally and socially responsible alternative. From the economic perspective, all the upgrading options depicted similar results. The technological-oriented weighting showed that the two most widespread upgrading options highlighted the optimal results.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"87 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A MCDA-Based Assessment of Biomethane Generation and Use in Sardinia\",\"authors\":\"Carla Asquer, Francesco Romagnoli\",\"doi\":\"10.2478/rtuect-2023-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The selection of a local and sustainable use of biogas, and biogas feedstocks, towards the upgrading process to biomethane, is a key aspect towards more consistent energy planning within the frame of the EU Green Deal and Sustainable Development Goals. In this paper, four biomethane production and utilization pathways were assessed in the view of economic, environmental, technological, and social dimensions compared to a reference scenario in which direct biogas use in a cogeneration unit is assumed. The technologies analyzed included membrane systems, amine scrubbing, water scrubbing, and biological methanation, regarding the Sardinian context. The impact assessment was carried out using the TOPSIS method. As an output, thirteen consistent indicators reflecting the holistic aspect of sustainability were designed and proposed based on an in-depth literature review and the authors’ technological knowledge. The results show that the reference scenario was the preferable one. In terms of environmental and social considerations, biological methanation emerged as the most environmentally and socially responsible alternative. From the economic perspective, all the upgrading options depicted similar results. The technological-oriented weighting showed that the two most widespread upgrading options highlighted the optimal results.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2023-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A MCDA-Based Assessment of Biomethane Generation and Use in Sardinia
Abstract The selection of a local and sustainable use of biogas, and biogas feedstocks, towards the upgrading process to biomethane, is a key aspect towards more consistent energy planning within the frame of the EU Green Deal and Sustainable Development Goals. In this paper, four biomethane production and utilization pathways were assessed in the view of economic, environmental, technological, and social dimensions compared to a reference scenario in which direct biogas use in a cogeneration unit is assumed. The technologies analyzed included membrane systems, amine scrubbing, water scrubbing, and biological methanation, regarding the Sardinian context. The impact assessment was carried out using the TOPSIS method. As an output, thirteen consistent indicators reflecting the holistic aspect of sustainability were designed and proposed based on an in-depth literature review and the authors’ technological knowledge. The results show that the reference scenario was the preferable one. In terms of environmental and social considerations, biological methanation emerged as the most environmentally and socially responsible alternative. From the economic perspective, all the upgrading options depicted similar results. The technological-oriented weighting showed that the two most widespread upgrading options highlighted the optimal results.
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.