重述矩阵多项式的最大公约数

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Vanni Noferini, Paul Van Dooren
{"title":"重述矩阵多项式的最大公约数","authors":"Vanni Noferini, Paul Van Dooren","doi":"10.1137/22m1531993","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the greatest common right divisor (GCRD) extraction from a set of polynomial matrices , , with coefficients in a generic field and with common column dimension . We give necessary and sufficient conditions for a matrix to be a GCRD using the Smith normal form of the compound matrix obtained by concatenating vertically, where . We also describe the complete set of degrees of freedom for the solution , and we link it to the Smith form and Hermite form of . We then give an algorithm for constructing a particular minimum size solution for this problem when or , using state-space techniques. This new method works directly on the coefficient matrices of , using orthogonal transformations only. The method is based on the staircase algorithm, applied to a particular pencil derived from a generalized state-space model of .","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Matrix Polynomial Greatest Common Divisor\",\"authors\":\"Vanni Noferini, Paul Van Dooren\",\"doi\":\"10.1137/22m1531993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we revisit the greatest common right divisor (GCRD) extraction from a set of polynomial matrices , , with coefficients in a generic field and with common column dimension . We give necessary and sufficient conditions for a matrix to be a GCRD using the Smith normal form of the compound matrix obtained by concatenating vertically, where . We also describe the complete set of degrees of freedom for the solution , and we link it to the Smith form and Hermite form of . We then give an algorithm for constructing a particular minimum size solution for this problem when or , using state-space techniques. This new method works directly on the coefficient matrices of , using orthogonal transformations only. The method is based on the staircase algorithm, applied to a particular pencil derived from a generalized state-space model of .\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1531993\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1531993","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重新讨论了从一组多项式矩阵中提取最大公右因子(GCRD)的问题。利用垂直拼接得到的复合矩阵的Smith范式,给出了矩阵是GCRD的充分必要条件,其中。我们还描述了解的完整自由度集合,并将其与史密斯形式和埃尔米特形式联系起来。然后,我们给出了一种算法,用于在或使用状态空间技术时为该问题构造特定的最小尺寸解。这种新方法直接作用于的系数矩阵,只使用正交变换。该方法基于阶梯算法,应用于由广义状态空间模型导出的特定铅笔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Matrix Polynomial Greatest Common Divisor
In this paper, we revisit the greatest common right divisor (GCRD) extraction from a set of polynomial matrices , , with coefficients in a generic field and with common column dimension . We give necessary and sufficient conditions for a matrix to be a GCRD using the Smith normal form of the compound matrix obtained by concatenating vertically, where . We also describe the complete set of degrees of freedom for the solution , and we link it to the Smith form and Hermite form of . We then give an algorithm for constructing a particular minimum size solution for this problem when or , using state-space techniques. This new method works directly on the coefficient matrices of , using orthogonal transformations only. The method is based on the staircase algorithm, applied to a particular pencil derived from a generalized state-space model of .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信