通过可视化解释深度人脸算法:调查

Thrupthi Ann John;Vineeth N. Balasubramanian;C. V. Jawahar
{"title":"通过可视化解释深度人脸算法:调查","authors":"Thrupthi Ann John;Vineeth N. Balasubramanian;C. V. Jawahar","doi":"10.1109/TBIOM.2023.3319837","DOIUrl":null,"url":null,"abstract":"Although current deep models for face tasks surpass human performance on some benchmarks, we do not understand how they work. Thus, we cannot predict how it will react to novel inputs, resulting in catastrophic failures and unwanted biases in the algorithms. Explainable AI helps bridge the gap, but currently, there are very few visualization algorithms designed for faces. This work undertakes a first-of-its-kind meta-analysis of explainability algorithms in the face domain. We explore the nuances and caveats of adapting general-purpose visualization algorithms to the face domain, illustrated by computing visualizations on popular face models. We review existing face explainability works and reveal valuable insights into the structure and hierarchy of face networks. We also determine the design considerations for practical face visualizations accessible to AI practitioners by conducting a user study on the utility of various explainability algorithms.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 1","pages":"15-29"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explaining Deep Face Algorithms Through Visualization: A Survey\",\"authors\":\"Thrupthi Ann John;Vineeth N. Balasubramanian;C. V. Jawahar\",\"doi\":\"10.1109/TBIOM.2023.3319837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although current deep models for face tasks surpass human performance on some benchmarks, we do not understand how they work. Thus, we cannot predict how it will react to novel inputs, resulting in catastrophic failures and unwanted biases in the algorithms. Explainable AI helps bridge the gap, but currently, there are very few visualization algorithms designed for faces. This work undertakes a first-of-its-kind meta-analysis of explainability algorithms in the face domain. We explore the nuances and caveats of adapting general-purpose visualization algorithms to the face domain, illustrated by computing visualizations on popular face models. We review existing face explainability works and reveal valuable insights into the structure and hierarchy of face networks. We also determine the design considerations for practical face visualizations accessible to AI practitioners by conducting a user study on the utility of various explainability algorithms.\",\"PeriodicalId\":73307,\"journal\":{\"name\":\"IEEE transactions on biometrics, behavior, and identity science\",\"volume\":\"6 1\",\"pages\":\"15-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biometrics, behavior, and identity science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10265112/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10265112/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然目前用于人脸任务的深度模型在某些基准测试中超过了人类的表现,但我们并不了解它们是如何工作的。因此,我们无法预测它将如何对新输入做出反应,从而导致算法出现灾难性的失败和不必要的偏差。可解释的人工智能有助于弥合这一差距,但目前针对人脸设计的可视化算法还很少。这项研究首次对人脸领域的可解释性算法进行了元分析。我们通过对流行的人脸模型进行可视化计算,探讨了将通用可视化算法应用于人脸领域的细微差别和注意事项。我们回顾了现有的人脸可解释性作品,揭示了对人脸网络结构和层次的宝贵见解。我们还通过对各种可解释性算法的实用性进行用户研究,确定了可供人工智能从业人员使用的实用人脸可视化的设计考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explaining Deep Face Algorithms Through Visualization: A Survey
Although current deep models for face tasks surpass human performance on some benchmarks, we do not understand how they work. Thus, we cannot predict how it will react to novel inputs, resulting in catastrophic failures and unwanted biases in the algorithms. Explainable AI helps bridge the gap, but currently, there are very few visualization algorithms designed for faces. This work undertakes a first-of-its-kind meta-analysis of explainability algorithms in the face domain. We explore the nuances and caveats of adapting general-purpose visualization algorithms to the face domain, illustrated by computing visualizations on popular face models. We review existing face explainability works and reveal valuable insights into the structure and hierarchy of face networks. We also determine the design considerations for practical face visualizations accessible to AI practitioners by conducting a user study on the utility of various explainability algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信