单模光子晶体光纤尖端制造的激光二极管与圆柱微透镜耦合:用ABCD矩阵预测耦合光学

Q3 Engineering
Angshuman Majumdar, Sankar Gangopadhyay
{"title":"单模光子晶体光纤尖端制造的激光二极管与圆柱微透镜耦合:用ABCD矩阵预测耦合光学","authors":"Angshuman Majumdar, Sankar Gangopadhyay","doi":"10.1515/joc-2023-0233","DOIUrl":null,"url":null,"abstract":"Abstract We report the theoretical prediction of the coupling optics involving a laser diode and photonic crystal fiber which contains on its tip cylindrical microlens. The analysis is based on relevant ABCD matrix formalism. Though photonic crystal fiber has very large single-mode region, we carry on the investigation for two commonly used wavelengths such as 1.3 µm and 1.5 µm. For the particular kind of photonic crystal having specific value of air filling ratio and hole pitch, we have optimized the distance of laser diode from the microlens in order to get maximum value of coupling efficiency for each value of radius of cylindrical microlens. Incidentally, we have got here maximum coupling efficiency to the extent of 86.99 % at the wavelength 1.3 µm when the radius of the cylindrical microlens is 8.5 µm and effective spot size of the fiber is 4.433909 µm. Further, the maximum efficiency becomes 91.78 % at 1.3 µm when the radius of the cylindrical microlens is 4.0 µm and effective spot size of the fiber is 1.859907 µm. It has been shown that wavelength 1.5 µm is not so coupling efficient like 1.3 µm. Moreover, it has been shown that with same set of relevant parameters, PCF is more coupling efficient compared to ordinary graded index fiber. Thus the present work generates scope for varying different photonic crystal fiber parameters and the wavelengths of source as well for enhancing the coupling efficiency. Accordingly, the present analysis will be extremely helpful for design of efficient coupler of this kind.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling of laser diode with cylindrical microlens fabricated on the tip of single-mode photonic crystal fiber: prediction of coupling optics by ABCD matrix\",\"authors\":\"Angshuman Majumdar, Sankar Gangopadhyay\",\"doi\":\"10.1515/joc-2023-0233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We report the theoretical prediction of the coupling optics involving a laser diode and photonic crystal fiber which contains on its tip cylindrical microlens. The analysis is based on relevant ABCD matrix formalism. Though photonic crystal fiber has very large single-mode region, we carry on the investigation for two commonly used wavelengths such as 1.3 µm and 1.5 µm. For the particular kind of photonic crystal having specific value of air filling ratio and hole pitch, we have optimized the distance of laser diode from the microlens in order to get maximum value of coupling efficiency for each value of radius of cylindrical microlens. Incidentally, we have got here maximum coupling efficiency to the extent of 86.99 % at the wavelength 1.3 µm when the radius of the cylindrical microlens is 8.5 µm and effective spot size of the fiber is 4.433909 µm. Further, the maximum efficiency becomes 91.78 % at 1.3 µm when the radius of the cylindrical microlens is 4.0 µm and effective spot size of the fiber is 1.859907 µm. It has been shown that wavelength 1.5 µm is not so coupling efficient like 1.3 µm. Moreover, it has been shown that with same set of relevant parameters, PCF is more coupling efficient compared to ordinary graded index fiber. Thus the present work generates scope for varying different photonic crystal fiber parameters and the wavelengths of source as well for enhancing the coupling efficiency. Accordingly, the present analysis will be extremely helpful for design of efficient coupler of this kind.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2023-0233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文报道了激光二极管与尖端含有圆柱形微透镜的光子晶体光纤耦合光学的理论预测。分析基于相关的ABCD矩阵形式。虽然光子晶体光纤具有非常大的单模区,但我们对1.3µm和1.5µm两种常用波长进行了研究。对于具有特定充气比值和孔间距值的特定光子晶体,我们优化了激光二极管与微透镜的距离,以便在圆柱微透镜半径的每个值下获得最大的耦合效率值。顺便说一下,当圆柱微透镜半径为8.5µm,光纤的有效光斑尺寸为4.433909µm时,在波长1.3µm处,我们得到了最大的耦合效率,达到86.99%。当圆柱微透镜半径为4.0µm,光纤的有效光斑尺寸为1.859907µm时,在1.3µm处效率达到91.78%。研究表明,波长1.5µm的耦合效率不如1.3µm。此外,在相同的相关参数下,与普通梯度折射率光纤相比,PCF具有更高的耦合效率。从而为改变不同的光子晶体光纤参数和光源波长以及提高耦合效率提供了空间。因此,本文的分析对此类高效耦合器的设计具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling of laser diode with cylindrical microlens fabricated on the tip of single-mode photonic crystal fiber: prediction of coupling optics by ABCD matrix
Abstract We report the theoretical prediction of the coupling optics involving a laser diode and photonic crystal fiber which contains on its tip cylindrical microlens. The analysis is based on relevant ABCD matrix formalism. Though photonic crystal fiber has very large single-mode region, we carry on the investigation for two commonly used wavelengths such as 1.3 µm and 1.5 µm. For the particular kind of photonic crystal having specific value of air filling ratio and hole pitch, we have optimized the distance of laser diode from the microlens in order to get maximum value of coupling efficiency for each value of radius of cylindrical microlens. Incidentally, we have got here maximum coupling efficiency to the extent of 86.99 % at the wavelength 1.3 µm when the radius of the cylindrical microlens is 8.5 µm and effective spot size of the fiber is 4.433909 µm. Further, the maximum efficiency becomes 91.78 % at 1.3 µm when the radius of the cylindrical microlens is 4.0 µm and effective spot size of the fiber is 1.859907 µm. It has been shown that wavelength 1.5 µm is not so coupling efficient like 1.3 µm. Moreover, it has been shown that with same set of relevant parameters, PCF is more coupling efficient compared to ordinary graded index fiber. Thus the present work generates scope for varying different photonic crystal fiber parameters and the wavelengths of source as well for enhancing the coupling efficiency. Accordingly, the present analysis will be extremely helpful for design of efficient coupler of this kind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Optical Communications
Journal of Optical Communications Engineering-Electrical and Electronic Engineering
CiteScore
2.90
自引率
0.00%
发文量
86
期刊介绍: This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信