{"title":"单模光子晶体光纤尖端制造的激光二极管与圆柱微透镜耦合:用ABCD矩阵预测耦合光学","authors":"Angshuman Majumdar, Sankar Gangopadhyay","doi":"10.1515/joc-2023-0233","DOIUrl":null,"url":null,"abstract":"Abstract We report the theoretical prediction of the coupling optics involving a laser diode and photonic crystal fiber which contains on its tip cylindrical microlens. The analysis is based on relevant ABCD matrix formalism. Though photonic crystal fiber has very large single-mode region, we carry on the investigation for two commonly used wavelengths such as 1.3 µm and 1.5 µm. For the particular kind of photonic crystal having specific value of air filling ratio and hole pitch, we have optimized the distance of laser diode from the microlens in order to get maximum value of coupling efficiency for each value of radius of cylindrical microlens. Incidentally, we have got here maximum coupling efficiency to the extent of 86.99 % at the wavelength 1.3 µm when the radius of the cylindrical microlens is 8.5 µm and effective spot size of the fiber is 4.433909 µm. Further, the maximum efficiency becomes 91.78 % at 1.3 µm when the radius of the cylindrical microlens is 4.0 µm and effective spot size of the fiber is 1.859907 µm. It has been shown that wavelength 1.5 µm is not so coupling efficient like 1.3 µm. Moreover, it has been shown that with same set of relevant parameters, PCF is more coupling efficient compared to ordinary graded index fiber. Thus the present work generates scope for varying different photonic crystal fiber parameters and the wavelengths of source as well for enhancing the coupling efficiency. Accordingly, the present analysis will be extremely helpful for design of efficient coupler of this kind.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling of laser diode with cylindrical microlens fabricated on the tip of single-mode photonic crystal fiber: prediction of coupling optics by ABCD matrix\",\"authors\":\"Angshuman Majumdar, Sankar Gangopadhyay\",\"doi\":\"10.1515/joc-2023-0233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We report the theoretical prediction of the coupling optics involving a laser diode and photonic crystal fiber which contains on its tip cylindrical microlens. The analysis is based on relevant ABCD matrix formalism. Though photonic crystal fiber has very large single-mode region, we carry on the investigation for two commonly used wavelengths such as 1.3 µm and 1.5 µm. For the particular kind of photonic crystal having specific value of air filling ratio and hole pitch, we have optimized the distance of laser diode from the microlens in order to get maximum value of coupling efficiency for each value of radius of cylindrical microlens. Incidentally, we have got here maximum coupling efficiency to the extent of 86.99 % at the wavelength 1.3 µm when the radius of the cylindrical microlens is 8.5 µm and effective spot size of the fiber is 4.433909 µm. Further, the maximum efficiency becomes 91.78 % at 1.3 µm when the radius of the cylindrical microlens is 4.0 µm and effective spot size of the fiber is 1.859907 µm. It has been shown that wavelength 1.5 µm is not so coupling efficient like 1.3 µm. Moreover, it has been shown that with same set of relevant parameters, PCF is more coupling efficient compared to ordinary graded index fiber. Thus the present work generates scope for varying different photonic crystal fiber parameters and the wavelengths of source as well for enhancing the coupling efficiency. Accordingly, the present analysis will be extremely helpful for design of efficient coupler of this kind.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2023-0233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Coupling of laser diode with cylindrical microlens fabricated on the tip of single-mode photonic crystal fiber: prediction of coupling optics by ABCD matrix
Abstract We report the theoretical prediction of the coupling optics involving a laser diode and photonic crystal fiber which contains on its tip cylindrical microlens. The analysis is based on relevant ABCD matrix formalism. Though photonic crystal fiber has very large single-mode region, we carry on the investigation for two commonly used wavelengths such as 1.3 µm and 1.5 µm. For the particular kind of photonic crystal having specific value of air filling ratio and hole pitch, we have optimized the distance of laser diode from the microlens in order to get maximum value of coupling efficiency for each value of radius of cylindrical microlens. Incidentally, we have got here maximum coupling efficiency to the extent of 86.99 % at the wavelength 1.3 µm when the radius of the cylindrical microlens is 8.5 µm and effective spot size of the fiber is 4.433909 µm. Further, the maximum efficiency becomes 91.78 % at 1.3 µm when the radius of the cylindrical microlens is 4.0 µm and effective spot size of the fiber is 1.859907 µm. It has been shown that wavelength 1.5 µm is not so coupling efficient like 1.3 µm. Moreover, it has been shown that with same set of relevant parameters, PCF is more coupling efficient compared to ordinary graded index fiber. Thus the present work generates scope for varying different photonic crystal fiber parameters and the wavelengths of source as well for enhancing the coupling efficiency. Accordingly, the present analysis will be extremely helpful for design of efficient coupler of this kind.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications