半空间中具有反射边界的线性玻尔兹曼模型的分数扩散极限

IF 1 4区 数学 Q1 MATHEMATICS
Ludovic Cesbron
{"title":"半空间中具有反射边界的线性玻尔兹曼模型的分数扩散极限","authors":"Ludovic Cesbron","doi":"10.3934/krm.2023033","DOIUrl":null,"url":null,"abstract":"We investigate the fractional diffusion limit of a Linear Boltzmann equation with heavy-tailed velocity equilibrium in a half-space with Maxwell boundary conditions. We derive a new confined version of the fractional Laplacian in a spatially bounded domain and show uniqueness of weak solution to the associated non-local diffusion equation.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"15 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fractional diffusion limit of a linear Boltzmann model with reflective boundaries in a half-space\",\"authors\":\"Ludovic Cesbron\",\"doi\":\"10.3934/krm.2023033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the fractional diffusion limit of a Linear Boltzmann equation with heavy-tailed velocity equilibrium in a half-space with Maxwell boundary conditions. We derive a new confined version of the fractional Laplacian in a spatially bounded domain and show uniqueness of weak solution to the associated non-local diffusion equation.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2023033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/krm.2023033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了具有麦克斯韦边界条件的半空间中具有重尾速度平衡的线性玻尔兹曼方程的分数扩散极限。我们在空间有界区域上导出了分数阶拉普拉斯算子的一个新的受限形式,并证明了相关非局部扩散方程弱解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional diffusion limit of a linear Boltzmann model with reflective boundaries in a half-space
We investigate the fractional diffusion limit of a Linear Boltzmann equation with heavy-tailed velocity equilibrium in a half-space with Maxwell boundary conditions. We derive a new confined version of the fractional Laplacian in a spatially bounded domain and show uniqueness of weak solution to the associated non-local diffusion equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信