{"title":"逼近矩阵函数作用的非精确有理Krylov子空间方法","authors":"Shengjie Xu, Fei Xue","doi":"10.1553/etna_vol58s538","DOIUrl":null,"url":null,"abstract":"This paper concerns the theory and development of inexact rational Krylovsubspace methods for approximating the action of a function of a matrix $f(A)$to a column vector $b$. At each step of the rational Krylov subspace methods, ashifted linear system of equations needs to be solved to enlarge the subspace.For large-scale problems, such a linear system is usually solved approximatelyby an iterative method. The main question is how to relax the accuracy of theselinear solves without negatively affecting the convergence of the approximationof $f(A)b$. Our insight into this issue is obtained by exploring the residualbounds for the rational Krylov subspace approximations of $f(A)b$, based on thedecaying behavior of the entries in the first column of certain matrices of $A$restricted to the rational Krylov subspaces. The decay bounds for these entriesfor both analytic functions and Markov functions can be efficiently andaccurately evaluated by appropriate quadrature rules. A heuristic based on thesebounds is proposed to relax the tolerances of the linear solves arising in eachstep of the rational Krylov subspace methods. As the algorithm progresses towardconvergence, the linear solves can be performed with increasingly lower accuracyand computational cost. Numerical experiments for large nonsymmetric matricesshow the effectiveness of the tolerance relaxation strategy for the inexactlinear solves of rational Krylov subspace methods.","PeriodicalId":50536,"journal":{"name":"Electronic Transactions on Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inexact rational Krylov subspace methods for approximating the action of functions of matrices\",\"authors\":\"Shengjie Xu, Fei Xue\",\"doi\":\"10.1553/etna_vol58s538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the theory and development of inexact rational Krylovsubspace methods for approximating the action of a function of a matrix $f(A)$to a column vector $b$. At each step of the rational Krylov subspace methods, ashifted linear system of equations needs to be solved to enlarge the subspace.For large-scale problems, such a linear system is usually solved approximatelyby an iterative method. The main question is how to relax the accuracy of theselinear solves without negatively affecting the convergence of the approximationof $f(A)b$. Our insight into this issue is obtained by exploring the residualbounds for the rational Krylov subspace approximations of $f(A)b$, based on thedecaying behavior of the entries in the first column of certain matrices of $A$restricted to the rational Krylov subspaces. The decay bounds for these entriesfor both analytic functions and Markov functions can be efficiently andaccurately evaluated by appropriate quadrature rules. A heuristic based on thesebounds is proposed to relax the tolerances of the linear solves arising in eachstep of the rational Krylov subspace methods. As the algorithm progresses towardconvergence, the linear solves can be performed with increasingly lower accuracyand computational cost. Numerical experiments for large nonsymmetric matricesshow the effectiveness of the tolerance relaxation strategy for the inexactlinear solves of rational Krylov subspace methods.\",\"PeriodicalId\":50536,\"journal\":{\"name\":\"Electronic Transactions on Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol58s538\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s538","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Inexact rational Krylov subspace methods for approximating the action of functions of matrices
This paper concerns the theory and development of inexact rational Krylovsubspace methods for approximating the action of a function of a matrix $f(A)$to a column vector $b$. At each step of the rational Krylov subspace methods, ashifted linear system of equations needs to be solved to enlarge the subspace.For large-scale problems, such a linear system is usually solved approximatelyby an iterative method. The main question is how to relax the accuracy of theselinear solves without negatively affecting the convergence of the approximationof $f(A)b$. Our insight into this issue is obtained by exploring the residualbounds for the rational Krylov subspace approximations of $f(A)b$, based on thedecaying behavior of the entries in the first column of certain matrices of $A$restricted to the rational Krylov subspaces. The decay bounds for these entriesfor both analytic functions and Markov functions can be efficiently andaccurately evaluated by appropriate quadrature rules. A heuristic based on thesebounds is proposed to relax the tolerances of the linear solves arising in eachstep of the rational Krylov subspace methods. As the algorithm progresses towardconvergence, the linear solves can be performed with increasingly lower accuracyand computational cost. Numerical experiments for large nonsymmetric matricesshow the effectiveness of the tolerance relaxation strategy for the inexactlinear solves of rational Krylov subspace methods.
期刊介绍:
Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM).