修正标量曲率流的渐近收敛性

IF 0.7 4区 数学 Q2 MATHEMATICS
Ling Xiao
{"title":"修正标量曲率流的渐近收敛性","authors":"Ling Xiao","doi":"10.4310/cag.2023.v31.n1.a3","DOIUrl":null,"url":null,"abstract":"In this paper, we study the flow of closed, starshaped hypersurfaces in $\\mathbb{R}^{n+1}$ with speed $r^\\alpha\\sigma_2^{1/2},$ where $\\sigma_2^{1/2}$ is the normalized square root of the scalar curvature, $\\alpha\\geq 2,$ and $r$ is the distance from points on the hypersurface to the origin. We prove that the flow exists for all time and the starshapedness is preserved. Moreover, after normalization, we show that the flow converges exponentially fast to a sphere centered at origin. When $\\alpha<2,$ a counterexample is given for the above convergence.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"6 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic convergence for modified scalar curvature flow\",\"authors\":\"Ling Xiao\",\"doi\":\"10.4310/cag.2023.v31.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the flow of closed, starshaped hypersurfaces in $\\\\mathbb{R}^{n+1}$ with speed $r^\\\\alpha\\\\sigma_2^{1/2},$ where $\\\\sigma_2^{1/2}$ is the normalized square root of the scalar curvature, $\\\\alpha\\\\geq 2,$ and $r$ is the distance from points on the hypersurface to the origin. We prove that the flow exists for all time and the starshapedness is preserved. Moreover, after normalization, we show that the flow converges exponentially fast to a sphere centered at origin. When $\\\\alpha<2,$ a counterexample is given for the above convergence.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n1.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n1.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了$\mathbb{R}^{n+1}$中速度为$r^\alpha\sigma_2^{1/2},$的封闭星形超曲面的流动,其中$\sigma_2^{1/2}$是标量曲率的归一化平方根,$\alpha\geq 2,$和$r$是超曲面上的点到原点的距离。我们证明了流是一直存在的,而且星形是保持不变的。此外,在归一化之后,我们证明了流以指数速度收敛到以原点为中心的球体。当$\alpha<2,$给出了上述收敛性的一个反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic convergence for modified scalar curvature flow
In this paper, we study the flow of closed, starshaped hypersurfaces in $\mathbb{R}^{n+1}$ with speed $r^\alpha\sigma_2^{1/2},$ where $\sigma_2^{1/2}$ is the normalized square root of the scalar curvature, $\alpha\geq 2,$ and $r$ is the distance from points on the hypersurface to the origin. We prove that the flow exists for all time and the starshapedness is preserved. Moreover, after normalization, we show that the flow converges exponentially fast to a sphere centered at origin. When $\alpha<2,$ a counterexample is given for the above convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信