{"title":"non-kählerian表面的正电流","authors":"Ionuţ Chiose, Matei Toma","doi":"10.4310/mrl.2023.v30.n2.a4","DOIUrl":null,"url":null,"abstract":"We propose a classification of non-k\\\"ahlerian surfaces from a dynamical point of view and show how the known non-k\\\"ahlerian surfaces fit into it.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"238 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive currents on non-kählerian surfaces\",\"authors\":\"Ionuţ Chiose, Matei Toma\",\"doi\":\"10.4310/mrl.2023.v30.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a classification of non-k\\\\\\\"ahlerian surfaces from a dynamical point of view and show how the known non-k\\\\\\\"ahlerian surfaces fit into it.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n2.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n2.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.