非单连通空间的自闭数

Pub Date : 2023-01-01 DOI:10.4310/hha.2023.v25.n2.a2
Yichen Tong
{"title":"非单连通空间的自闭数","authors":"Yichen Tong","doi":"10.4310/hha.2023.v25.n2.a2","DOIUrl":null,"url":null,"abstract":"The self-closeness number $N\\mathcal{E}(X)$ of a space $X$ is the least integer $k$ such that any self-map is a homotopy equivalence whenever it is an isomorphism in the $n$-th homotopy group for each $n\\le k$. We discuss the self-closeness numbers of certain non-simply-connected $X$ in this paper. As a result, we give conditions for $X$ such that $N\\mathcal{E}(X)=N\\mathcal{E}(\\widetilde{X})$, where $\\widetilde{X}$ is the universal covering space of $X$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-closeness numbers of non-simply-connected spaces\",\"authors\":\"Yichen Tong\",\"doi\":\"10.4310/hha.2023.v25.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The self-closeness number $N\\\\mathcal{E}(X)$ of a space $X$ is the least integer $k$ such that any self-map is a homotopy equivalence whenever it is an isomorphism in the $n$-th homotopy group for each $n\\\\le k$. We discuss the self-closeness numbers of certain non-simply-connected $X$ in this paper. As a result, we give conditions for $X$ such that $N\\\\mathcal{E}(X)=N\\\\mathcal{E}(\\\\widetilde{X})$, where $\\\\widetilde{X}$ is the universal covering space of $X$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2023.v25.n2.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Self-closeness numbers of non-simply-connected spaces
The self-closeness number $N\mathcal{E}(X)$ of a space $X$ is the least integer $k$ such that any self-map is a homotopy equivalence whenever it is an isomorphism in the $n$-th homotopy group for each $n\le k$. We discuss the self-closeness numbers of certain non-simply-connected $X$ in this paper. As a result, we give conditions for $X$ such that $N\mathcal{E}(X)=N\mathcal{E}(\widetilde{X})$, where $\widetilde{X}$ is the universal covering space of $X$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信