Dusan Lj. Djukić, Rada M. Mutavdžić Djukić, Lothar Reichel, Miodrag M. Spalević
求助PDF
{"title":"最优平均padvac -type近似","authors":"Dusan Lj. Djukić, Rada M. Mutavdžić Djukić, Lothar Reichel, Miodrag M. Spalević","doi":"10.1553/etna_vol59s145","DOIUrl":null,"url":null,"abstract":"Padé-type approximants are rational functions that approximate a given formal power series. Boutry [Numer. Algorithms, 33 (2003), pp 113â122] constructed Padé-type approximants that correspond to the averaged Gauss quadrature rules introduced by Laurie [Math. Comp., 65 (1996), pp. 739â747]. More recently, SpaleviÄ [Math. Comp., 76 (2007), pp. 1483â1492] proposed optimal averaged Gauss quadrature rules, that have higher degree of precision than the corresponding averaged Gauss rules, with the same number of nodes. This paper defines Padé-type approximants associated with optimal averaged Gauss rules. Numerical examples illustrate their performance.","PeriodicalId":50536,"journal":{"name":"Electronic Transactions on Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal averaged Padé-type approximants\",\"authors\":\"Dusan Lj. Djukić, Rada M. Mutavdžić Djukić, Lothar Reichel, Miodrag M. Spalević\",\"doi\":\"10.1553/etna_vol59s145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Padé-type approximants are rational functions that approximate a given formal power series. Boutry [Numer. Algorithms, 33 (2003), pp 113â122] constructed Padé-type approximants that correspond to the averaged Gauss quadrature rules introduced by Laurie [Math. Comp., 65 (1996), pp. 739â747]. More recently, SpaleviÄ [Math. Comp., 76 (2007), pp. 1483â1492] proposed optimal averaged Gauss quadrature rules, that have higher degree of precision than the corresponding averaged Gauss rules, with the same number of nodes. This paper defines Padé-type approximants associated with optimal averaged Gauss rules. Numerical examples illustrate their performance.\",\"PeriodicalId\":50536,\"journal\":{\"name\":\"Electronic Transactions on Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol59s145\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol59s145","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
引用
批量引用
Optimal averaged Padé-type approximants
Padé-type approximants are rational functions that approximate a given formal power series. Boutry [Numer. Algorithms, 33 (2003), pp 113â122] constructed Padé-type approximants that correspond to the averaged Gauss quadrature rules introduced by Laurie [Math. Comp., 65 (1996), pp. 739â747]. More recently, SpaleviÄ [Math. Comp., 76 (2007), pp. 1483â1492] proposed optimal averaged Gauss quadrature rules, that have higher degree of precision than the corresponding averaged Gauss rules, with the same number of nodes. This paper defines Padé-type approximants associated with optimal averaged Gauss rules. Numerical examples illustrate their performance.