广义词典积中的哈密顿性质

IF 0.5 4区 数学 Q3 MATHEMATICS
Jan Ekstein, Jakub Teska
{"title":"广义词典积中的哈密顿性质","authors":"Jan Ekstein, Jakub Teska","doi":"10.7151/dmgt.2527","DOIUrl":null,"url":null,"abstract":"The lexicographic product $G[H]$ of two graphs $G$ and $H$ is obtained from $G$ by replacing each vertex with a copy of $H$ and adding all edges between any pair of copies corresponding to adjacent vertices of $G$. We generalize the lexicographic product such that we replace each vertex of $G$ with arbitrary graph on the same number of vertices. We present sufficient and necessary conditions for traceability, hamiltonicity and hamiltonian connectivity of $G[H]$ if $G$ is a path.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"9 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian properties in generalized lexicographic products\",\"authors\":\"Jan Ekstein, Jakub Teska\",\"doi\":\"10.7151/dmgt.2527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lexicographic product $G[H]$ of two graphs $G$ and $H$ is obtained from $G$ by replacing each vertex with a copy of $H$ and adding all edges between any pair of copies corresponding to adjacent vertices of $G$. We generalize the lexicographic product such that we replace each vertex of $G$ with arbitrary graph on the same number of vertices. We present sufficient and necessary conditions for traceability, hamiltonicity and hamiltonian connectivity of $G[H]$ if $G$ is a path.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2527\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgt.2527","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

两个图$G$和$H$的字典积$G[H]$是由$G$通过用$H$的副本替换每个顶点,并将$G$的相邻顶点对应的任意一对副本之间的所有边相加而得到的。我们将字典积一般化,使得我们将$G$的每个顶点替换为相同数目顶点上的任意图。当$G$是一条路径时,给出了$G[H]$的可追溯性、哈密顿性和哈密顿连通性的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian properties in generalized lexicographic products
The lexicographic product $G[H]$ of two graphs $G$ and $H$ is obtained from $G$ by replacing each vertex with a copy of $H$ and adding all edges between any pair of copies corresponding to adjacent vertices of $G$. We generalize the lexicographic product such that we replace each vertex of $G$ with arbitrary graph on the same number of vertices. We present sufficient and necessary conditions for traceability, hamiltonicity and hamiltonian connectivity of $G[H]$ if $G$ is a path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信